Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Multiscale Computational Engineering
IF: 1.016 5-Year IF: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Print: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2013005115
pages 359-368

GLOBAL SENSITIVITY ANALYSIS FOR A MICROPOLAR STOKES FLOW PROBLEM

Daniel O'Malley
Department of Earth, Atmospheric, and Planetary Sciences, Purdue University West Lafayette, Indiana 47907, USA
John H. Cushman
Purdue University West Lafayette Indiana UNITED STATES
L. M. Flesch
Department of Earth, Atmospheric, and Planetary Sciences, Purdue University West Lafayette, Indiana 47907, USA

ABSTRACT

Micropolar field theories provide a systematic approach to modeling traditional materials like elastic bodies or viscous fluids that have microstructure. The downside to accounting for the behavior on the smaller scale is the introduction of many new parameters into the field equations. The difficulty of handling these new parameters can be mitigated by performing a sensitivity analysis to determine which parameters have the greatest impact on the solutions to the field equations. The sensitivity of an incompressible micropolar Stokes fluid to variations in the viscosity coefficients and boundary value of the microinertia is examined. This particular choice of field equations is motivated by an application of micropolar field theories to the deformation of the continental lithosphere, but the same approach can be used for other micropolar equations modeling solids or other types of fluids.

REFERENCES

  1. Ariman, T., Turk, M., and Sylvester, N., Applications of microcontinuum fluid mechanics. DOI: 10.1016/0020-7225(74)90059-7

  2. Axtell, N., Park, M., and Cushman, J., Micromorphic fluid in an elastic porous body: Blood flow in tissues with microcirculation. DOI: 10.1615/IntJMultCompEng.v3.i1.60

  3. Bird, P. and Piper, K., Plane-stress finite-element models of tectonic flow in southern-california. DOI: 10.1016/0031-9201(80)90067-9

  4. Chen, Y. and Lee, J., Multiscale modeling of polycrystalline silicon. DOI: 10.1016/j.ijengsci.2003.11.004

  5. Elman, H., Silvester, D., and Wathen, A., Finite Element and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics.

  6. England, P. and Houseman, G., Finite strain calculations of continental deformation. DOI: 10.1029/JB091iB03p03664

  7. England, P. and McKenzie, D., A thin viscous sheet model for continental deformation. DOI: 10.1111/j.1365-246X.1982.tb04969.x

  8. Eringen, A., Microcontinuum Field Theories I: Foundations and Solids.

  9. Eringen, A., Microcontinuum Field Theories II: Fluent Media.

  10. Eringen, A., Incompressible micromorphic fluid model for turbulence. DOI: 10.1016/S0020-7225(03)00007-7

  11. Eringen, A., On a rational theory of turbulence. DOI: 10.1016/j.ijengsci.2004.11.001

  12. Flesch, L., Holt, W., Haines, A. J., Wen, L., and Shen-Tu, B., The dynamics of western North America: Stress magnitudes and the relative role of gravitational potential energy, plate interaction at the boundary and basal interactions. DOI: 10.1111/j.1365-246X.2007.03274.x

  13. Gan, W., Zhang, P., Shen, Z.-K., Niu, Z., Wang, M., Wan, Y., Zhou, D., and Cheng, J., Present-day crustal motion within the tibetan plateau inferred from gps measurements. DOI: 10.1029/2005JB004120

  14. Iesan, D., Some applications of micropolar mechanics to earthquake problems. DOI: 10.1016/0020-7225(81)90119-1

  15. Iyengar, T. and Charya, D., Stokes flow of an incompressible micropolar fluid past an approximate sphere. DOI: 10.1016/0020-7225(93)90069-7

  16. Meade, B., Present-day kinematics at the indian-asia collision zone. DOI: 10.1130/G22924A.1

  17. Philip, D. and Chandra, P., Flow of eringen fluid (simple microfluid) through an artery with mild stenosis. DOI: 10.1016/0020-7225(95)00077-1

  18. Prakash, J. and Sinha, P., Lubrication theory for micropolar fluids and its application to a journal bearing. DOI: 10.1016/0020-7225(75)90031-2

  19. Ramkissoon, H. and Devanathan, R., On a linear steady-state system of equations in microcontinuum fluid mechanics. DOI: 10.1016/0020-7225(80)90067-1

  20. Saltelli, A., Global Sensitivity Analysis: An Introduction.

  21. Thatcher, W., Microplate model for present-day deformation of Tibet. DOI: 10.1029/2005JB004244

  22. Twiss, R., An asymmetric micropolar moment tensor derived from a discrete-block model for a rotating granular substructure. DOI: 10.1785/0120080084


Articles with similar content:

Green's Function and Eshelby's Fields in Couple-Stress Elasticity
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 1
Quanshui Zheng, Z.-H. Zhao
A GENERALIZED APPROACH TO COMPOSITE BEAM DEFLECTIONS
Composites: Mechanics, Computations, Applications: An International Journal, Vol.8, 2017, issue 3
Naser S. Al-Huniti
MODIFIED TRANSPORT EQUATIONS FOR THE THREE-PHASE FLOW OF IMMISCIBLE, INCOMPRESSIBLE FLUIDS THROUGH WATER-WET POROUS MEDIA
Journal of Porous Media, Vol.15, 2012, issue 2
Ramon G. Bentsen , Japan J. Trivedi
DETERMINATION OF NONLOCAL CONSTITUTIVE EQUATIONS FROM PHONON DISPERSION RELATIONS
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 6
Olaf Weckner, Stewart A. Silling
METHOD OF DETERMINATION OF RATIONAL DESIGN PARAMETERS USING THE FINITE-ELEMENT METHOD
TsAGI Science Journal, Vol.46, 2015, issue 2
Evgueniy Vladimirivich Kasumov