Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Multiscale Computational Engineering
IF: 1.016 5-Year IF: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Print: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v9.i4.40
pages 395-408

PERTURBATION-BASED STOCHASTIC MICROSCOPIC STRESS ANALYSIS OF A PARTICLE-REINFORCED COMPOSITE MATERIAL VIA STOCHASTIC HOMOGENIZATION ANALYSIS CONSIDERING UNCERTAINTY IN MATERIAL PROPERTIES

Sei-ichiro Sakata
Department of Electronic and Control Systems Engineering, Interdisciplinary Faculty of Science and Engineering, Shimane University, Japan
F. Ashida
Department of Electronic and Control Systems Engineering, Interdisciplinary Faculty of Science and Engineering, Shimane University, Japan
K. Enya
Graduate School of Shimane University, Japan

ABSTRACT

This paper discusses stochastic multiscale stress analysis of a particle-reinforced composite material via the stochastic homogenization analysis. A microscopic random variation causes a random variation of a homogenized property and microscopic stress. For this stochastic stress analysis, a first-order perturbation-based approach is employed. The perturbation-based approach consists of stochastic homogenization, stochastic macroscopic, and microscopic stress analysis procedures. As an example, stochastic microscopic stress analysis for a microscopic random variation of a glass particle-reinforced composite material using the perturbation-based technique is performed. The obtained results are compared with the results of the Monte Carlo simulation; validity and application limit of the first-order perturbation-based approach is investigated.

REFERENCES

  1. Guedes, M. and Kikuchi, N., Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. DOI: 10.1016/0045-7825(90)90148-F

  2. Kaminski, M., Stochastic finite element method homogenization of heat conduction problem in fiber composites.

  3. Kaminski, M., Generalized perturbation-based stochastic finite element method in elastostatics. DOI: 10.1016/j.compstruc.2006.08.077

  4. Kaminski, M., Sensitivity and randomness in homogenization of periodic fiber-reinforced composites via the response function method. DOI: 10.1016/j.ijsolstr.2008.10.003

  5. Kaminski, M. and Kleiber, M., Perturbation based stochastic finite element method for homogenization of two-phase elastic composites. DOI: 10.1016/S0045-7949(00)00116-4

  6. Lombardo, M., Zeman, J., Sejnoha, M., and Falsone, G., Stochastic modeling of chaotic masonry via mesostructural characterization. DOI: 10.1615/IntJMultCompEng.v7.i2.70

  7. Ostoja-Starzewski, M., Microstructural randomness versus representative volume element in thermomechanics. DOI: 10.1115/1.1410366

  8. Press, W. H., Teukolski, S. A., Vetterling, W. T., and Flannery, B. P., Numerical Recipes in C (Japanese edition).

  9. Sakata, S., Ashida, F., Kojima, T., and Zako, M., Influence of uncertainty in microscopic material property on homogenized elastic property of unidirectional fiber reinforced composites.

  10. Sakata, S., Ashida, F., Kojima, T., and Zako, M., Three-dimensional stochastic analysis using a perturbation-based homogenization method for homogenized elastic property of inhomogeneous material considering microscopic uncertainty.

  11. Sakata, S., Ashida, F., and Zako, M., Stochastic response analysis of FRP using the second-order perturbation-based homogenization method. DOI: 10.1299/jmmp.2.70

  12. Sakata, S., Ashida, F., and Zako, M., Kriging-based approximate stochastic homogenization analysis for composite material. DOI: 10.1016/j.cma.2007.12.011

  13. Sakata, S., Ashida, F., and Kojima, T., Stochastic homogenization analysis on elastic properties of fiber reinforced composites using the equivalent inclusion method and perturbation method. DOI: 10.1016/j.ijsolstr.2008.08.017

  14. Sakata, S. and Ashida, F., Ns-Kriging based microstructural optimization applied to minimizing stochastic variation of homogenized elasticity of fiber reinforced composites. DOI: 10.1007/s00158-008-0296-6

  15. Sakata, S. and Ashida F., Stochastic analysis of microscopic stress in fiber reinforced composites considering uncertainty in a microscopic elastic property.

  16. Sakata, S., Ashida, F., and Kojima, T., Stochastic homogenization analysis for thermal expansion coefficients of fiber reinforced composites using the equivalent inclusion method with perturbation-based approach. DOI: 10.1016/j.compstruc.2009.12.007

  17. Sakata, S. and Ashida, F., A hierarchical stochastic homogenization method for particle-reinforced composite materials considering non-uniform distribution of microscopic random quantities. DOI: 10.1007/s00466-011-0604-7

  18. Stefanou, G., The stochastic finite element method: Past, present and future. DOI: 10.1016/j.cma.2008.11.007

  19. Xu, X. F. and Graham-Brady, L., Computational stochastic homogenization of random media elliptic problems using Fourier Galerkin method. DOI: 10.1016/j.finel.2005.11.003


Articles with similar content:

INVERSE STOCHASTIC HOMOGENIZATION ANALYSIS FOR A PARTICLE-REINFORCED COMPOSITE MATERIAL WITH THE MONTE CARLO SIMULATION
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 4
F. Ashida, Y. Shimizu, Sei-ichiro Sakata
Anisotropic Micromechanical Creep Damage Model for Composite Materials: A Reduced-Order Approach
International Journal for Multiscale Computational Engineering, Vol.6, 2008, issue 2
Erez Gal, Jacob Fish
COMPUTATIONAL CONTINUA FOR THICK ELASTIC LAYERED STRUCTURES
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 5
Vasilina Filonova, Jacob Fish
Genetic Programming for Multiscale Modeling
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 2
Kumara Sastry, David E. Goldberg, D. D. Johnson, Pascal Bellon
MULTISCALE PARAMETER IDENTIFICATION
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 4
Paul Steinmann, Julia Mergheim, Ulrike Schmidt