Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Multiscale Computational Engineering
IF: 1.016 5-Year IF: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Print: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2011002017
pages 565-578

NON-LOCAL COMPUTATIONAL HOMOGENIZATION OF PERIODIC MASONRY

Andrea Bacigalupo
Department of Civil, Environmental and Architectural Engineering, University of Genova, via Montallegro, 1-16145 Genova, Italy
Luigi Gambarotta
Department of Civil, Environmental and Architectural Engineering, University of Genova, via Montallegro, 1-16145 Genova, Italy

ABSTRACT

Micro-polar and second-order homogenization procedures for periodic elastic masonry have been implemented to include geometric and material length scales in the constitutive equation. From the evaluation of the numerical response of the unit cell representative of the masonry to properly prescribed displacement boundary conditions related to homogeneous macro-strain fields, the elastic moduli of the higher-order continua are obtained on the basis of an extended Hill-Mandel macro-homogeneity condition. Elastic moduli and internal lengths for the running bond masonry are obtained in the case of Cosserat and second-order homogenization. To evaluate these results, a shear layer problem representative of a masonry wall subjected to a uniform horizontal displacement at points on the top is analyzed as a micro-polar and a second-order continuum and the results are compared to those corresponding with the reference heterogeneous model. From this analysis the second-order homogenization appears to provide better results in comparison with the micro-polar homogenization.

REFERENCES

  1. Bakhvalov, N. S. and Panasenko, G. P., Homogenization: Averaging Processes in Periodic Media.

  2. Boutin, C., Micro-structural effects in elastic composites. DOI: 10.1016/0020-7683(95)00089-5

  3. Bouyge, F., Jasiuk, I., and Ostoja-Starzewski, M., A micromechanically based couple-stress model of an elastic two-phase composite. DOI: 10.1016/S0020-7683(00)00132-3

  4. Bouyge, F., Jasiuk, I., Boccara, S., and Ostoja-Starzewski, M., A micromechanically based couple-stress model of an elastic orthotropic two-phase composite. DOI: 10.1016/S0997-7538(01)01192-5

  5. Casolo, S., Macroscopic modelling of structured materials: Relationship between orthotropic Cosserat continuum and rigid elements. DOI: 10.1016/j.ijsolstr.2005.03.037

  6. Feyel, F., A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. DOI: 10.1016/S0045-7825(03)00348-7

  7. Forest, S. and Sab, K., Cosserat overall modeling of heterogeneous materials. DOI: 10.1016/S0093-6413(98)00059-7

  8. Gambarotta, L. and Bacigalupo, A., Cosserat homogenization of elastic periodic blocky masonry.

  9. Germain, P., The method of virtual power in continuum mechanics. Part 2: Microstructure. DOI: 10.1137/0125053

  10. Kaczmarczyk, L., Pearce, C., and Bićanić, N., Scale transition and enforcement of RVE boundary conditions in second-order computational homogenization. DOI: 10.1002/nme.2188

  11. Kouznetsova, V. G., Geers, M. G. D., and Brekelmans, W. A. M., Multi-scale second-order computational homogenization of multi-phase materials: A nested finite element solution strategy. DOI: 10.1016/j.cma.2003.12.073

  12. Mindlin, R. D., Micro-structure in linear elasticity. DOI: 10.1007/BF00248490

  13. Mistler, M., Anthoine, A., and Butenweg, C., In-plane and out-of-plane homogenisation of masonry. DOI: 10.1016/j.compstruc.2006.08.087

  14. Peerlings, R. H. J. and Fleck, N. A., Computational evaluation of strain gradient elasticity constants. DOI: 10.1615/IntJMultCompEng.v2.i4.60

  15. Salerno, G. and de Felice, G., Continuum modeling of periodic brickwork. DOI: 10.1016/j.ijsolstr.2008.10.034

  16. Smyshlyaev, V. P. and Cherednichenko, K. D., On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media. DOI: 10.1016/S0022-5096(99)00090-3

  17. Sulem, J. and Mühlhaus, H. B., A continuum model for periodic two-dimensional block structures. DOI: 10.1002/(SICI)1099-1484(199701)2:1<31::AID-CFM24>3.0.CO;2-O

  18. Triantafyllidis, N. and Bardenhagen, S., The influence of scale size on the stability of periodic solids and the role of associated higher order gradient continuum models. DOI: 10.1016/0022-5096(96)00047-6

  19. Trovalusci, P. and Masiani, R., A multifield model for blocky materials based on multiscale description. DOI: 10.1016/j.ijsolstr.2005.03.027

  20. Van der Sluis, O., Vosbeek, P. H. J., Schreurs, P. J. G., and Meijer, H. E. H., Homogenization of heterogeneous polymers. DOI: 10.1016/S0020-7683(98)00144-9


Articles with similar content:

MULTISCALE ANALYSIS OF IN-PLANE MASONRY WALLS ACCOUNTING FOR DEGRADATION AND FRICTIONAL EFFECTS
International Journal for Multiscale Computational Engineering, Vol.18, 2020, issue 2
S. Marfia, Daniela Addessi, E. Sacco, C. Gatta
A COSSERAT BASED MULTI-SCALE MODEL FOR MASONRY STRUCTURES
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 5
Maria Laura De Bellis, Daniela Addessi
MICROMORPHIC TWO-SCALE MODELLING OF PERIODIC GRID STRUCTURES
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 2
Hans-Georg Sehlhorst, Alexander Duster, Ralf Janicke, Stefan Diebels
MULTISCALE MODEL CALIBRATION BY INVERSE ANALYSIS FOR NONLINEAR SIMULATION OF MASONRY STRUCTURES UNDER EARTHQUAKE LOADING
International Journal for Multiscale Computational Engineering, Vol.18, 2020, issue 2
Bassam A. Izzuddin, Corrado Chisari, Lorenzo Macorini
A NEW MULTISCALE FINITE ELEMENT METHOD FOR MECHANICAL ANALYSIS OF PERIODIC HETEROGENEOUS COSSERAT MATERIALS
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 4
Hongwu Zhang, Zhaoqian Xie