Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Multiscale Computational Engineering
IF: 1.016 5-Year IF: 1.194 SJR: 0.452 SNIP: 0.68 CiteScore™: 1.18

ISSN Print: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v2.i3.50
23 pages

Multilevel Parallel Programming for Multiscale Modeling of Composite Materials

Paul M. Eder
Department of Mechanical Engineering, Ohio State University, Columbus, Ohio 43210
James E. Giuliani
Science and Technology Support Group, The Ohio Supercomputer Center 1224 Kinnear Rd., Columbus, Ohio, 43210
Somnath Ghosh
Department of Civil Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA

ABSTRACT

This paper presents work aimed at implementing an efficient multilevel parallel model for an adaptive multiscale finite element model. The FEM model combines a traditional displacement based finite element model with a microstructural Voronoi cell finite element method (VCFEM) for multiscale modeling of heterogeneous microstructures with nonuniform microstructural heterogeneities. Three levels of hierarchy are used in the model, including (a) level-0 of pure macroscopic analysis; (b) level-1 of macro-micro coupling, used for signaling the switch over from macroscopic analyses to pure microscopic analyses; and (c) level-2 regions of pure microscopic modeling. A distributed/shared memory (DSM) cluster system is used for code development and execution, where multiprocessor nodes offer shared memory on the node and distributed memory between the nodes. The approach uses multiple parallel models to efficiently distribute the level-1 and level-2 workloads across multiple workstations based on computational requirements. The Message Passing Interface (MPI) library is used for distributed memory decomposition between nodes, and multithreading using the OpenMP (OMP) library is used for shared memory decomposition on each node. An efficient iterative multigrid solver is also integrated. The details of these implementations are discussed and numerical results, which demonstrate the ability of the parallel model to solve problems in a fast and efficient manner, are provided.


Articles with similar content:

HIERARCHICAL PETRI NET MODELING FOR SYSTEM DYNAMICS AND CONTROL OF MANUFACTURING SYSTEMS
Flexible Automation and Intelligent Manufacturing, 1997:
Proceedings of the Seventh International FAIM Conference, Vol.0, 1997, issue
N. G. Odrey, C. S. Liu, Y. H. Ma
Multiscale Dislocation Dynamics Plasticity
International Journal for Multiscale Computational Engineering, Vol.1, 2003, issue 1
S. M. A. Khan, H. M. Zbib, G. Karami, M. Shehadeh
ERROR CONTROLLED USE OF THE TAYLOR ASSUMPTION IN ADAPTIVE HIERARCHICAL MODELING OF DSS
International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 2
Robert Lillbacka, Kenneth Runesson, Fredrik Larsson
AN ADAPTIVE FINITE ELEMENT MULTIWAVELET-BASED METHOD FOR ELASTIC PLATE PROBLEMS
International Journal for Multiscale Computational Engineering, Vol.12, 2014, issue 3
Youming Wang, Yongqing Fan, Qing Wu
Multiscale Modeling of Point and Line Defects in Cubic Lattices
International Journal for Multiscale Computational Engineering, Vol.5, 2007, issue 3-4
John Clayton, Peter W. Chung