Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Atomization and Sprays
IF: 1.737 5-Year IF: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Print: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volume 30, 2020 Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v13.i1.10
26 pages

SIMULATION OF WATER AND OTHER NON-FUEL SPRAYS USING A NEW SPRAY MODEL

James C. Beck
Atomization and Sprays Research Group, Mechanical, Aerospace and Manufacturing Engineering Department, UMIST, Manchester, United Kingdom
A. Paul Watkins
Energy and Multiphysics Research Group, School of Mechanical, Aerospace, and Civil Engineer- ing, University of Manchester, United Kingdom

ABSTRACT

Hitherto, all polydisperse spray models have been based on discretizing the liquid flow field into groups of equally sized droplets. The work assessed here involves the implementation of a spray model [1-3] that captures the full polydisperse nature of the spray flow without using droplet size classes. The parameters used to describe the distribution of droplet sizes are the first four moments of the droplet number distribution function. Transport equations are written for the two moments which represent, per unit volume, the liquid mass and surface area, and two more moments representing the sum of the droplet radii and droplet number are approximated via use of a presumed distribution function which is allowed to vary in space and time. The velocities to be used in the two transport equations are obtained by defining moment-average quantities and constructing further transport equations for the relevant moment-average velocities. An equation for the energy of the liquid phase and standard gas-phase equations, including a k-e turbulence model, are also solved. All the equations are solved in a Eulerian framework using the finite-volume approach, and the phases are coupled through source terms. Effects such as droplet breakup and droplet—droplet collisions are also included through the use of source terms, and all the source terms are expressed in terms of the four moments of the droplet size distribution in order to find the net effect on the whole spray flow field.
In previous journal publications, the model has been qualitatively assessed by examining the predicted structures of narrow-cone, wide-angle full-cone and hollow-cone sprays, and the dependence of the results on parametric changes. Quantitative verification using experimental data has largely been confined to macro features of the sprays, such as penetration rates.
In this article the model is further assessed by examining the microstructure of the predicted sprays. Comparisons are made with experimental data on local values of drop sizes, mass fluxes, and drop velocities for wide-angle full-cone, hollow-cone, and evaporating sprays. In most cases, good agreement is achieved. The one exception to this is the mass flux distributions predicted for wide-angle full-cone water sprays. Suggestions for improvement are made to the modeling for this, and for other features of sprays.


Articles with similar content:

EVALUATION OF MODELS FOR COLLISIONAL SURFACE PRODUCTION WITHIN THE Σ–Y EULERIAN SPRAY ATOMIZATION MODEL
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.22, 2018, issue 2-3
Tim Gronarz, Reinhold Kneer, Dominik Eichler, Philipp Pischke
CHARACTERISTICS OF TRANSIENT, SWIRL-GENERATED, HOLLOW-CONE SPRAYS
Atomization and Sprays, Vol.16, 2006, issue 5
Julian T. Kashdan, John S. Shrimpton
THREE-DIMENSIONAL SIMULATION OF EFFERVESCENT ATOMIZATION SPRAY
Atomization and Sprays, Vol.19, 2009, issue 1
Jian-Zhong Lin, Ze-Fei Zhu, Hong-Bing Xiong
THEORETICAL INVESTIGATION OF THE SPRAY FROM A PRESSURIZED METERED-DOSE INHALER
Atomization and Sprays, Vol.7, 1997, issue 4
C. A. Dunbar, J. F. Miller
MOMENTUM ANALYSES FOR DETERMINATION OF DROP SIZE AND DISTRIBUTIONS DURING SPRAY ATOMIZATION
Atomization and Sprays, Vol.30, 2020, issue 2
Miroslav Raudensky, Hana Bellerova, T.-W. Lee, J. E. Park, Milan Hnizdl