Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Critical Reviews™ in Eukaryotic Gene Expression
IF: 1.841 5-Year IF: 1.927 SJR: 0.649 SNIP: 0.516 CiteScore™: 1.96

ISSN Print: 1045-4403
ISSN Online: 2162-6502

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukarGeneExpr.v10.i2.10
14 pages

Therapeutic Angiogenesis: A Case for Targeted, Regulated Gene Delivery

Keith A. Webster
Department of Molecular and Cellular Pharmacology, University of Miami Medical Center, 1600 NW 10th Avenue, RMSB 6038, Miami, FL 33136

ABSTRACT

Blood and vascular disorders underlie a plethora of pathological conditions and are the single most frequent cause of human disease. Eliminated or restricted blood flow to tissues as a result of vessel dysfunction results in the disruption of oxygen and nutrient delivery and the accumulation of waste metabolites. Cells cannot survive extended severe ischemia but may be able to adapt to a moderate condition where diffusion to and from bordering nonischemic regions sustain vital functions. Under this condition, secondary functions of affected cells are likely to be impaired and a new metabolic equilibrium is established, determined by the level of cross-diffusion. In tissues with a normally high metabolic turnover such as skeletal and cardiac muscle, ischemia causes hypoxia, acidosis, and depressed function (contractility). The treatment possibilities for tissue ischemia resulting from vascular disease are limited. Lipid-lowering agents may help slow the progression of vessel disease in some instances, but surgical reconstruction may be the only option in advanced stages, and even this is not always an option. An alternative and rather obvious strategy to treat ischemia is to activate endogenous angiogenic or vasculogenic pathways and stimulate revascularization of the tissue. The feasibility of such a strategy has now been established through the results of studies over the past decade and a new discipline called therapeutic angiogenesis has emerged. This review focuses on the application of therapeutic angiogenesis for treating peripheral limb ischemia and coronary artery diseases; the author traces the evidence supporting the feasibility of this treatment strategy, its current limitations, and possible directions.


Articles with similar content:

Phosphorylcholine-Coated Stents
Journal of Long-Term Effects of Medical Implants, Vol.12, 2002, issue 4
Andrew L. Lewis, Peter W. Stratford
A Review on Phosphorylcholine-Coated Stents
Journal of Long-Term Effects of Medical Implants, Vol.27, 2017, issue 2-4
Andrew L. Lewis, Peter W. Stratford
Adipose-Derived Adult Stem Cells: Available Technologies for Potential Clinical Regenerative Applications in Dentistry
Critical Reviews™ in Biomedical Engineering, Vol.41, 2013, issue 6
Elena Varoni, Andrea Cochis, Barbara Azzimonti, Lia Rimondini, Enrico Catalano, Antonio Carrassi
Stem Cells for Skin Tissue Engineering and Wound Healing
Critical Reviews™ in Biomedical Engineering, Vol.37, 2009, issue 4-5
Francois Berthiaume, Melissa Przyborowski, Ming Chen
Human Umbilical Cord–Derived Stem Cells: Isolation, Characterization, Differentiation, and Application in Treating Diabetes
Critical Reviews™ in Biomedical Engineering, Vol.46, 2018, issue 5
Bhawna Chandravanshi, Ramesh R. Bhonde