Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Critical Reviews™ in Eukaryotic Gene Expression
IF: 1.841 5-Year IF: 1.927 SJR: 0.627 SNIP: 0.516 CiteScore™: 1.96

ISSN Print: 1045-4403
ISSN Online: 2162-6502

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukaryotGeneExpr.v13.i1.50
18 pages

Mechanisms Mediating Oxalate-Induced Alterations in Renal Cell Functions

Julie A. Jonassen
Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01655
Lu-Cheng Cao
Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01655
Thomas Honeyman
Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01655
Cheryl R. Scheid
Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01655

ABSTRACT

Oxalate is a major component of the most common form of kidney stones—calcium oxalate stones. High concentrations of oxalate promote stone formation in two ways: (1) by providing urinary conditions favorable to the formation of calcium oxalate crystals, and (2) by inducing renal injury that generates cellular debris and promotes crystal nucleation and attachment. Oxalate toxicity is mediated in part by activation of lipid signaling pathways that produce arachidonic acid, lysophospholipids, and ceramide. These lipids disrupt mitochondrial function by increasing reactive oxygen species (ROS), decreasing mitochondrial membrane potential, and increasing mitochondrial permeability. The net response is cytochrome C release, activation of caspases, and apoptosis or necrosis. Not all cells succumb to oxalate toxicity, however; in those cells that don’t, ROS and lipid-signaling molecules induce changes in gene expression that allow them to survive and adapt to the toxic insult. The increased expression of immediate early genes (IEGs), osteopontin, extracellular matrix (ECM) proteins, crystallization inhibitors, and chemokines orchestrates a group of cellular responses—including cell proliferation, secretion of kidney stone inhibitory proteins, recruitment of immune cells, and tissue remodeling—that limit accumulation of cell debris or increase the production of inhibitors of calcium oxalate crystallization, thereby limiting stone formation.


Articles with similar content:

Antitumoral Activity of Sorafenib in Hepatocellular Carcinoma: Effects on Cell Survival and Death Pathways, Cell Metabolism Reprogramming, and Nitrosative and Oxidative Stress
Critical Reviews™ in Oncogenesis, Vol.21, 2016, issue 5-6
Francisco J. Padillo, Jordi Muntané, Maria A. Rodriguez-Hernandez, Elena Navarro-Villaran, Raul Gonzalez, Francisco J. Molina-Ruiz
Neutrophil Apoptosis and Hypoxia
International Journal of Physiology and Pathophysiology, Vol.1, 2010, issue 4
Andrey Polyakov, Larissa Dyugovskaya
Mechanism and Consequences of δ-Opioid Receptor Internalization
Critical Reviews™ in Neurobiology, Vol.17, 2005, issue 1
Rudiger Schulz, Daniela A. Eisinger
Elimination of Virus-Specific Cytotoxic T Cells in the Liver
Critical Reviews™ in Immunology, Vol.22, 2002, issue 1
Gunther Dennert
The Role of Tec Family Kinases in Mononuclear Phagocytes
Critical Reviews™ in Immunology, Vol.29, 2009, issue 4
Afitap Derya Koprulu, Wilfried Ellmeier