Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal of Medicinal Mushrooms
IF: 1.423 5-Year IF: 1.525 SJR: 0.433 SNIP: 0.661 CiteScore™: 1.38

ISSN Print: 1521-9437
ISSN Online: 1940-4344

International Journal of Medicinal Mushrooms

DOI: 10.1615/IntJMedMushrooms.2019030345
pages 393-400

The Impact of Drying of Wild-Growing Mushrooms on the Content and Antioxidant Capacity of Water- Soluble Polysaccharides

Wojciech Radzki
Department of Fruits, Vegetables and Mushrooms Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Lublin, Poland
Aneta Slawinska
Department of Fruits, Vegetables and Mushrooms Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Lublin, Poland
Katarzyna Skrzypczak
Department of Fruits, Vegetables and Mushrooms Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Lublin, Poland
Monika Michalak-Majewska
Department of Fruits, Vegetables and Mushrooms Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Lublin, Poland

ABSTRACT

Water-soluble polysaccharides (WSPs) were isolated from freeze-dried and hot-air–dried fruiting bodies of five wild-growing edible species: Armillaria mellea, Lactarius deliciosus, Leccinum aurantiacum, Suillus luteus, and Boletus badius. The concentrations of WSPs ranged from 36.3 ± 0.7 mg/g dw to 105.9 ± 3.9 mg/g dw. The method of drying substantially affected the quantity of WSP. The loss of WSP depended on species and varied between ~ 19% and ~ 48%. The extracted WSP contained varied amounts of carbohydrate, protein, and phenolics. The samples exerted antioxidant properties measured with the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay (11.5 ± 2.0 to 38.4 ± 3.6 μmol Trolox/g dw) and the Ferric reducing antioxidant power (FRAP) assay (9.1 ± 1.3 to 40.6 ± 1.4 μmol Trolox/g dw). In most cases, hot-air drying slightly increased the antioxidant potential of WSP.

REFERENCES

  1. Cheung PCK. , The nutritional and health benefits of mushrooms. Nutr Bull. 2010;35(4):292–9.

  2. Radzki W, Sławińska A, Jabłońska-Ryś E, Gustaw W. , Antioxidant capacity and polyphenolics content in dried wild growing edible mushrooms. Int J Med Mushrooms. 2014;16(1):65–75.

  3. Teplyakova TV, Kosogova TA. , Antiviral effect of Agaricomycetes mushrooms. Int J Med Mushrooms. 2016;18(5):375–86.

  4. Stachowiak B, Reguła J. , Health-promoting potential of edible macromycetes under special consideration of polysaccharides: a review. Eur Food Res Technol. 2012;234(3):369–80.

  5. Nowak R, Nowacka-Jechalke N, Juda M, Malm A. , The preliminary study of prebiotic potential of Polish wild mushroom polysaccharides: the stimulation effect on Lactobacillus strains growth. Eur J Nutr. 2018:57(4):1511–21.

  6. Sari M, Prange A, Lelley JI, Hambitzer R. , Screening of beta-glucan contents in commercially cultivated and wild growing mushrooms. Food Chem. 2017;216:45–51.

  7. Muszyńska B, Ziaja KS, Wolkowska M, Ekiert H. , Chemical, pharmacological, and biological characterization of the culinarymedicinal honey mushroom, Armillaria mellea (Vahl) P. Kumm. (Agaricomycetidae): a review. Int J Med Mushrooms. 2011;13(2):167–75.

  8. Finley JW, Kong AN, Hintze KJ, Jeffery EH, Ji LL, Lei XG. , Antioxidants in foods: state of the science important to the food industry. J Agric Food Chem. 2011;59(13):6837–46.

  9. Pandey KB, Rizvi SI. , Plant polyphenols as dietary antioxidants in human health and disease. Oxidat Med Cell Long. 2009;2(5):270–8.

  10. He JZ, Ru QM, Dong DD, Sun PL. , Chemical characteristics and antioxidant properties of crude water soluble polysaccharides from four common edible mushrooms. Molecules. 2012;17(4):4373–87.

  11. Xu L, Wang Q, Wang G, Wu JY. , Contents and antioxidant activities of polysaccharides in 14 wild mushroom species from the forest of Northeastern China. Int J Med Mushrooms. 2015;17(12):1161–70.

  12. Chen P, Yong Y, Gu Y, Wang Z, Zhang S, Lu L. , Comparison of antioxidant and antiproliferation activities of polysaccharides from eight species of medicinal mushrooms. Int J Med Mushrooms. 2015;17(3):287–95.

  13. Tsiapali E, Whaley S, Kalbfleisch J, Ensley HE, Browder IW, Williams DL. , Glucans exhibit weak antioxidant activity, but stimulate macrophage free radical activity. Free Radic Biol Med. 2001;30(4):393–402.

  14. Cheung YC, Siu KC, Liu YS, Wu JY. , Molecular properties and antioxidant activities of polysaccharide-protein complexes from selected mushrooms by ultrasound-assisted extraction. Process Biochem. 2012;47(5):892–95.

  15. Saura-Calixto F. , Dietary fiber as a carrier of dietary antioxidants: an essential physiological function. J Agric Food Chem. 2011;59(1):43–9.

  16. Saura-Calixto F. , Concept and health-related properties of nonextractable polyphenols: the missing dietary polyphenols. J Agric Food Chem. 2012;60(45):11195–200.

  17. Singh P, Langowski HC, Wani AA, Saengerlaub S. , Recent advances in extending the shelf life of fresh Agaricus mushrooms: a review. J Sci Food Agric. 2010;90(9):1393–402.

  18. Chang ST, Miles PG. , Mushrooms cultivation, nutritional value, medicinal effect, and environmental impact. Boca Raton (FL): CRC Press; 2004.

  19. Barros L, Baptista P, Correia DM, Morais JS, Ferreira ICFR. , Effects of conservation treatment and cooking on the chemical composition and antioxidant activity of Portuguese wild edible mushrooms. J Agric Food Chem. 2007;55(12):4781–8.

  20. Radzki W, Ziaja-Sołtys M, Nowak J, Rzymowska J, Topolska J, Sławińska A, Michalak-Majewska M, Zalewska-Korona M, Kuczumow A., Effect of processing on the content and biological activity of polysaccharides from Pleurotus ostreatus mushroom. LWT Food Sci Technol. 2016;66:27–33.

  21. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. , Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28(3):350–66.

  22. Bradford MM. , A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem. 1976;72(1–2):248–54.

  23. Singleton VL, Rossi JA. , Colorimetry of total phenolics with phosphomolybdic acid–phosphotungstic acid reagents. Am J Enol Vitic. 1965;16:144–58.

  24. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. , Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26(9–10):1231–7.

  25. Benzie IFF, Strain JJ. , The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: the FRAP assay. Anal Biochem. 1996;239(1):70–6.

  26. Lung MY, Chang YC. , In vitro antioxidant properties of polysaccharides from Armillaria mellea in batch fermentation. Afr J Biotechnol. 2011;10(36):7048–57.

  27. Konno N, Sakamoto Y. , An endo-β-1,6-glucanase involved in Lentinula edodes fruiting body autolysis. Appl Microbiol Biotechnol. 2011;91(5):1365–73.

  28. Bernaś E, Jaworska G, Kmiecik W. , Storage and processing of edible mushhroms. Acta Sci Pol Technol Aliment. 2006;5(2):5–23.

  29. Renard CMGC, Baron A, Guyot S, Drilleau JF. , Interactions between apple cell walls and native apple polyphenols: quantification and some consequences. Int J Biol Macromol. 2001;29(2):115–25.

  30. Zhang N, Chen H, Zhang Y, Ma L, Xu X. , Comparative studies on chemical parameters and antioxidant properties of stipes and caps of shiitake mushroom as affected by different drying methods. J Sci Food Agric. 2013;93(12):3107–13.

  31. Jaworska G, Pogoń K, Bernaś E, Skrzypczak A. , Effect of different drying methods and 24-month storage on water activity, rehydration capacity, and antioxidants in Boletus edulis mushrooms. Drying Technol. 2014;32:291–300.

  32. Thetsrimuang C, Khammuang S, Chiablaem K, Srisomsap C, Sarnthima R. , Antioxidant properties and cytotoxicity of crude polysaccharides from Lentinus polychrous Lév. Food Chem. 2011;128(3):634–9.

  33. Vamanu E. , Biological activities of the polysaccharides produced in submerged culture of two edible Pleurotus ostreatus mushrooms. J Biomed Biotechnol. 2012;2012:565974.

  34. Thetsrimuang C, Khammuang S, Sarnthima R. , Antioxidant activity of crude polysaccharides from edible fresh and dry mushroom fruiting bodies of Lentinus sp. strain RJ-2. Int J Pharmacol. 2011;7(1):58–65.

  35. Leung PH, Zhao S, Ho KP, Wu JY. , Chemical properties and antioxidant activity of exopolysaccharides from mycelial culture of Cordyceps sinensis fungus Cs-HK1. Food Chem. 2009;114(4):1251–6.

  36. Siu KC, Chen X, Wu JY. , Constituents actually responsible for the antioxidant activities of crude polysaccharides isolated from mushrooms. J Funct Foods. 2014;11(C):548–56.


Articles with similar content:

Antioxidant Capacity and Polyphenolic Content of Dried Wild Edible Mushrooms from Poland
International Journal of Medicinal Mushrooms, Vol.16, 2014, issue 1
Ewa Jablonska-Rys, Waldemar Gustaw, Wojciech Radzki, Aneta Slawinska
Complex Enzyme-Assisted Extraction, Purification, and Antioxidant Activity of Polysaccharides from the Button Mushroom, Agaricus bisporus (Higher Basidiomycetes)
International Journal of Medicinal Mushrooms, Vol.17, 2015, issue 10
Xiulian Yin, Qinghong You, Xinghai Zhou
Antioxidant Potential and Antioxidant Compounds of Extracts from the Medicinal Sulphur Polypore, Laetiporus sulphureus (Higher Basidiomycetes) in Submerged Cultures
International Journal of Medicinal Mushrooms, Vol.15, 2013, issue 6
Ming-Yeou Lung, Wei Zhong Huang
Chemical Characterization and In Vitro Antioxidant Activity Evaluation of Polysaccharides from the Fruiting Bodies of the Red Heart Mushroom Phellinus pini (Higher Basidiomycetes)
International Journal of Medicinal Mushrooms, Vol.17, 2015, issue 3
Peilong Sun, Ruwei Wang, Jiangning Hu, Chen Xing, Kai Yang, Yuezhong Jin
Nutrient Compositions of Culinary-Medicinal Mushroom Fruiting Bodies and Mycelia
International Journal of Medicinal Mushrooms, Vol.13, 2011, issue 4
Jeng-Leun Mau, Enkhjargal Ulziijargal