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Probability distribution functions (PDFs) may be estimated from members in an ensemble. For an ensemble of 2D
vector fields, this results in a bivariate PDF at each location in the field. Vector field analysis and visualization, e.g.,
stream line calculation, require an interpolation to be defined over these 2D density estimates. Thus, a nonparametric
PDF interpolation must advect features as opposed to cross-fading them, where arbitrary modalities in the distribution
can be introduced. This is already achieved for 1D PDF interpolation via inverse cumulative distribution functions
(CDFs). However, there is no closed-form extension to bivariate PDF. This paper presents one such direct extension
of the 1D closed-form solution for bivariates. We show an example of physically coupled components (velocity) and
correlated random variables. Our method does not require a complex implementation or expensive computation as does
displacement interpolation Bonneel et al., ACM Trans. Graphics (TOG), 30(6):158, 2011. Additionally, our method
does not suffer from ambiguous pair-wise linear interpolants, as does Gaussian Mixture Model Interpolation.

KEY WORDS: spatial statistics, density estimation, computational statistics, random fields, uncertainty
quantification, representation of uncertainty, spatial uncertainty

1. INTRODUCTION

A fundamental operation used in most visualization algomi is interpolation. Interpolation is used in workhorse
visualization techniques such as marching cubes, dirdom rendering, and stream line generation, and many
other popular algorithms. Performing interpolation is vdeifined when the data points and the interpolants are crisp.
However, this is not the case when the data points consistlist@bution.

With increasing interest in representing uncertainty irdelmg and simulation with techniques based on Monte
Carlo methods, we are now faced with the challenge of anadyaind visualizing ensemble fields. Ensemble fields are
made up of individual realizations, each a possible outcafhe simulation. Assuming that the ensemble fields are
defined over a regular Cartesian grid, a popular approachtieat all the values at a given grid point from different
realizations as a distribution. Recent works in this are® lpgimarily assumed that the distribution follows a Gaaissi
distribution. Even more recent efforts have extended thimih-Gaussian distributions.

In this paper, we extend a closed-form 1D probability disttion function interpolation method [1] that advects
features for nonparametric probability distribution ftinns (PDFs). It is essentially a method that interpolatesg
tiles of the corresponding cumulative distribution funas (CDFs) and then solves for the interpolant PDF. However,
until now, there was no direct extension to bivariate disttions, which are needed to represent vector PDF interpo-
lation.

This paper addresses both physical vector fields (e.g.¢ciglangular momentum) and a vector of scalar fields
(e.g., two scalar fields, for instance temperature and hityriida vector representation). Our interpolation method

*Correspond to Brad Eric Hollister, E-mail: behollis@sasaiedu

2152-5080/15/$35.00 (©) 2015 by Begell House, Inc. 123



124 Hollister & Pang

is general, and applies to both types of vectors. Our methaoecessary for physical vector fields that cannot be
decomposed into univariate distributions and for coreglaandom variables.

This work is motivated by the need for a nonparametric PDéralation that scales to large data sets by employ-
ing variable computational cost for required levels of aacy. It is primarily applicable to multidimensional fields
whose component random variables are correlated. Unatetetandom variables may be treated as univariates.

2. RELATED WORK

A nice overview of statistical techniques for spatial ip@ation was presented by Myers [2]. The techniques range
from simple linear models with no covariance, to those uspagial structure functions. The survey however does not
include nonparametric distribution interpolation. Th@eadoes claim that interpolation is a solution to an inhtyen
ill-posed problem, namely that it is a problem of predictigith limited data. For that, multiple models with different
purposes can be employed. A more detailed survey [3], buisiog on geostatistical applications, compares methods
according to different criteria such as local vs. globalmam, deterministic vs. stochastic, univariate vs mutiste,
linear vs. nonlinear, etc. Among the methods that considehastic data, they assume normal distribution.

Within the visualization community, there are also a numdfeecent publications that address stochastic inter-
polation. Schlegel et al. [4] present a form of Kriging intefation of spatial data for Gaussian distributions using a
parameter-based approach. This technique relies on cargputovariance matrix and that the underlying data be
formed from a Gaussian process. Pfaffelmoser et al. [5]aliz@ isosurfaces via a raycasting scheme, and perform
spatial interpolation assuming the data have a Gaussi#iibditon at each location. Likewise, Pothkow et al. [6]
discuss isocontour visualization of normally distributieda. They interpolated between grid points using the 0th an
1st moments without spatial correlation consideratiomeisubsequent work [7] considered the effects of spatial
correlation in visualizing isosurfaces using probahgistarching cubes. An alternative method of looking at globa
correlation structures in a hierarchical fashion was preskin [8].

When data do not follow a Gaussian distribution, a more genarcertainty model is needed. Liu et al. [9] pro-
pose a Gaussian mixture to represent the distribution oéiveadues in air temperature data. They perform volume
rendering on the data set and interpolate between pairs xéa@fiumber of Gaussian components along cast rays. In
their study, they found that four Gaussian kernels are seiffidor a variety of data sets that they examined. In addi-
tion, they support stationary and anisotropic correlaiorthe process, but at the expense of considering multimoda
qualities of the probability distributions at grid poinor nonparametric representations of non-Gaussianlalistri
tions, operations on the distributions require differeamidling. Love, et al. [10] discuss two forms of a nonparaioetr
interpolation method via convolution addition of probéilistributions as well as bin-wise addition. Pohl, et al.
[11] first transform the (discrete) distribution to Euclésiespace via a set of Log Odds operations, where they can
then be manipulated using conventional addition and migéfjon. Results are then mapped back to probabilistic
space via a reversible transform.

Uncertainty in vector fields is of great interest to at least broad fields: environmental science, e.g., oceanog-
raphy and meteorology [12, 13], and fiber tracking of diffustensor magnetic resonance images (DT MRI). Both
[14] and [15], discuss non-Gaussian methods in these afeasaarch. Otto et al. present analysis of 2D [16] and 3D
velocity fields [17] using particle advection, critical pts, and segmentation of field topology. Petz et al. [18] also
analyze uncertain velocity fields modeled as Gaussian rarfigtds with spatial correlation.

There is a growing body of work on probabilistic fiber traakitunlike velocity fields, the tracks here represent
fiber connectivity from one region to another and are obthlmeintegrating the major eigenvector field of symmetric
DT MRI data set. The main source of uncertainty can be atethto inadequate resolution in the data acquisition
stage. However, there are numerous other sources as welWhile most of the earlier works on probabilistic fiber
tracking delved on the inadequacy of the simple tensor sgmtation to show alternative trajectories due to multiple
fiber populations within a cell, more recent works are bagedigh angular resolution diffusion imaging (HARDI)
data, which makes it is possible to describe fiber oriemtatising more sophisticated formulations such as spherical
harmonics and multitensor representations. In a recemrpdiao et al. [20] describe a local, icon-based presemtati
of an ensemble field of fiber orientation distribution funats (ODF). The results of our paper can be used toward
spatial analysis of such ensemble fields, for example.
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There is much interest in the meteorological community tovjate better visualization of forecast data. Slingsby
et. al [21], discuss how users interpret and use weather dpégifically hurricane data. Storm path information
are examined from historical data. They draw attention adiapand temporal clustering and its undervalued status
among those currently employing such visualization saftwd/eather forecasts are usually based on an ensemble of
predictions. For that, Potter et al. [22] describe a framéfar viewing stochastic information from ensembles. This
package allows for visualization of spaghetti plotting,. etf weather data. Sanyal et al. [23] present Noodles, a soft
ware package for displaying uncertainty in stream linesathdr weather data visualization for ensemble forecasting
Potter et al. [24] describe a software tool to visualize timensional sets of distribution data. It displays a contou
of field PDF values and allows for a normed difference betwdsta PDFs and an ansatz selected by the user. More
recently, Phadke et al. [25] present two novel visualizatieethods for ensembles. Primarily, they allow simultarseou
viewing of multiple ensemble members. They also presergtanique calle&creen Door Tintingvhich applies value
changes to field points that show differences between erlesmb

From the point of view of users, Martin et al. [26] point ouéttiifficulty of users to identify hurricane directional
movement and speed from current data visualization, octilyren vector fields. In a similar study, Broad et al. [27],
further emphasize interpretation and usage of complexheeatata. They show how a general interpretation of a
Gaussian distribution of hurricane direction predictian &ead to inaccurate views on the probability withicoae of
uncertainty Clearly, if multimodal velocity distribution is calculked with such a broad region of uncertainty using a
Gaussian assumption, incorrect estimation of the proiyabfihurricane direction can occur, most specifically with
the general population who can be greatly impacted by suehgretation. A non-Gaussian consideration for vector
field visualization together with a redesigned visualimatinay rectify this issue to a degree.

The method presented by Liu et al. [9], which proposes a Gaussixture model, is insufficient for bivariate
PDF. Despite the use of a fixed number of Gaussian basis funscfor PDF estimates, the interpolation is only
unambiguous for 1D PDF when pairing Gaussian componentségrder of their mean parameter. For 2D Gaussian
mixture models, there is no such ordering. It is possiblertteobivariate Gaussian components based on their mean
probability, but this does not follow from the 1D case of aidg based on the mean parameter value.

Displacement Interpolation, developed by Bonneel et &],[® a general method for multivariate PDF interpo-
lation. It is shown to reduce to the 1D PDF interpolation préed by Read [1]. It satisfies the advection of features
by interpolating populations instead of cross-fading thé@onneel et al. provide an in-depth discussion of this prop
erty in their paper.) It is based on solving for intermedmsafutions to the Earth Mover’s Distance, a minimum cost
problem of transforming one PDF into another. This methoelsdwot scale well to 2D field interpolation, however.
It is computationally costly, with current CPU implemeiat (using compiled code) taking on the order of minutes
to hours for interpolation between only two PDF. In the forreqented by Bonneel et al., it is developed only for
interpolation between two PDF.

3. BIVARIATE QUANTILE INTERPOLATION
3.1 Derivation

We extend a CDF-based interpolation method for use withrizitePDF, which is needed for uncertain 2D velocity
fields. The original 1D method was analytically derived ify @ind is shown below. Heré{(z) is the CDF with its
associated PDF;(x), as in Eq. (1).

Fe) = [ " f(hydn 1)

fo and f; are two known PDF used for the interpolation. Their CDF Bjeand F}, respectively. The quantilg
corresponds to both, andz; in Egs. (2) and (3).

Fo(xo) =y (2

Fi(z1) =y 3)
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F(z) is the interpolant CDF found from linearly interpolatingweenx, andz;, shown in Egs. (4) and (5).
z=(1—-o)zy+ azy (4)
F(z)=vy (5)
Using F—1, we haveF, ! (y) = xo, F; '(y) = 21 andF~!(y) = z. Substituting these results into Eq. (4) yields
F7Ny) = (1— o) Fy ' (y) + ok (y) (6)

Knowing thatdx = dF~1(y), dy = dF (z) anddxz/dy = (dy/dx)~!, we have

dF~'(y) [dF(x)]™" 1
2= = 0

Thus, applyingl/dy to Eq. (6), and solving fof (z) produces
f_(«f) — ,f()('r())fl(zl)
(1 — o) fi(z1) + ocfo(zo)

Our contribution is the novel extension to 2D PDF intergolat Equation (9) represents the 2D conceptual ex-
tension of Eq. (8). The parametee [0, n] is introducted to provide a unique one-to-one correspocelbrtween:
andy pairs on the corresponding quantile curves from two bivafDFsf, and f,, the known PDFs we interpolate

from.
SN ey Jo(@o(t), yo(t:)) f1 (21 (t:), y1 (£:))
T8 90D = G20 B (t), wi (1)) + foCwolts), olte) ©)

Additionally, « is the linear interpolation factor that determines the kgeln distance in the scaled probability
space of the interpolani(¢;), i(t;))” . This relationship is expressed in Eq. (10).

| R e ) I B w0

The parametet, is taken as the fraction of the arc length of the rectifiedngjleacurves fromf, and f;. The arc
lengthZ of curveC is defined as in Eq. (11) on the interyal b]. ds? = dz? + dy? for the infinitesimal line segment

ds.
L(c)_/abds_/ab,/1+<%>2dx (11)

For finite numerical approximations, whetkis the image of a continuous functién [a, b] — R™, we have

(8)

<

n—1
L(C) = sup > d(i(ti), U(tirn)) (12)

a=to<t1<-<tn=b iy

All quantile curves are indexed with the same numbei finite ¢;, regardless of the value @f(C). Effectively
then, eactiz(t;),y(t;))* pair between curves are the same fractional length of thieirec

Our method does not seek to minimize various metrics planedapped curve segments. For instance, we do not
minimize distance in the sample space between paired samplthe quantile curves being interpolated but use the
simpler heuristic of arc length parameterization.

For interpolation within a grid cell, Eq. (9) can be extendsthg bilinear interpolation via botk and3 weights
for the orthogonal directions of the grid. Theand 3 weights within the unit cell are shown in Fig. 1.
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0 a 1
FIG. 1: Unit cell interpolation using botk andf3.

In Eg. (13), we show the interpolation solved for the unit cake. For brevity, we omit thec(t;), y(t;)) pairs
associated with each PDF. Each vertex represents the éstifaBFs from the ensemble for those locations. Setting
eitherx or 3 to zero reduces to interpolation along a line.

fofifaf3

I = TRl vadtpBr a0 3
A, B, andC are shown in Egs. (14)—(16), respectively.
A= fofafs— fifafs (14)
B = fofifs — fifafs (15)
C = fifafs — fofafs — fofifs — fofife (16)

3.2 Algorithm

The major steps of the quantile interpolation method arevahio Fig. 2.

Stagegyather samplesindestimate densitare implementation specific. We do not cover their impleragon
details here and the user may choose varying approachesdiegen the data. For example, kernel density estimation
(KDE) [29] with different window settings can be used for dity estimation.

For theCDF calculationstage, we collecfu, v) pairs for each requested quantile curve. Wews@duv to refer
to the components of a 2D velocity vector, in placecafndy from the previous section. The input to the routine is a
data object that represents the density estimate. Thetahjpports returning the maximum and minimum values for
u andv and the density for given extents. The routine is shown iroAtgm 1.

quantiles is the set of quantilesiob; is the density objeciypts is a dictionary of point lists, whose key is a
quantile fromquantiles and whose value is a list of points. Each point i@:av) pair on the corresponding quantile

’ gather samples ‘
’ estirnateV density ‘
___________ D e

| CDF calculation |
¥

’ parameterize quantiles ‘

! 1
! 1
! 1
! 1
! 1
! 1
1 Y |
! 1
! 1
! 1
! 1
! 1
! 1

’ interpolate quantiles ‘
Y

’ evaluate interpolant PDF values ‘

’ reconstruct PDF surface ‘

FIG. 2: Quantile PDF interpolation method. Dashed outline sigsifiere method stages discussed in the paper.
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Algorithm 1: CDF calculation
Data: dobj, quantiles
Result: gpts
initialize gpts;
for ¢ = dobj.min_u to dobj.max_u do
for j = dobj.min_v to dobj.max_v do
d = density in regior{min_u, min_v) to (i, j);
foreach ¢ in quantiles do
if g— TOL < d < ¢+ TOL then
| apts[ql.append((i, 5));
end
end

end
end

within a tolerance TOL. TOL:=2|quantiles|, where|guantiles| is the cardinality ofiuantiles. The intervals from
dobj.min_u to dobj.max_u, and fromdobj.min_v to dobj.max_v, are both divided evenly by DIV, the number of
divisions along each dimension. DIV can be tuned for degiesdlution and CPU timings. We show our choice for
DIV in Table 1 undeiintegration mesh size

For theparameterize quantilestage (see Algorithm 2), we iterate through each membepiafand interpolate
each individual curve using a curve objeabj, that can later be evaluated to obtain aripdexed byu.

This routine returngcurves, a list of points from a parameterization of a curve repréesgbycobj. We approx-
imate the parameter in Eq. (12) by evenly dividing the entire interval of a quémtiurve from an ortho-projection
onto theu axis by NUMLPTS (the number of points chosen for parameterization) ke eévaluate theob; from this
interval ofu values. We assume that the quantile curves are monotgniicateasing over the interval.

Forinterpolate quantilesee Algorithm 3. This routine loops through all membergwintiles and interpolates
each parameterized point between corresponding quanijl@s-ves store the interpolated points for interpolant

TABLE 1. Parameters used bivariate quantile inter-

polation
Integration mesh size 200 x 200
Number of quantiles <100

Quantile curve interpolation | Linear
Number of points per quantile 150
PDF surface interpolation Linear simplicial

Algorithm 2: Parameterize quantiles
Data: gpts, quantiles
Result: gcurves
initialize gcurves;
foreach ¢ in quantiles do
cobj = interpolate curve for albts in gpts|q];
foreach u in evenly spaced NUNPTS over intervalgpts|q][0], gpts|q|[index at list length — 1]] do
| qcurves[q].append((u, cobj(u));
end
end
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Algorithm 3: Bilinear interpolation of quantile curves

Data: dobj0, dobjl, dobj2, dobj3, qcurves0, qcurvesl, gcurves2, gecurves3, «, 3, quantiles
Result: ipdf

initialize iqcurves01;

initialize iqcurves23;

initialize ipdf;

foreach ¢ in quantiles do

foreach idx in qcurves0O[q| do

vec0l = qeurvesl[g][idz] — geurvesO|q][idx];

iqcurves01[q|.append(x * vec01);

end

foreach idx in gcurves2[q| do

vec23 = qeurves3|qg|[idz] — geurves2|q][idx];
iqeurves23[q|.append(o * vec23);

end

foreach idx in qcurves01[q] do

vec = qeurves23[q|[idz] — geurves01[q][idx];

ipt = B * vec;

idens = evalPDF@obj0,dobj1,dobj2,dobj3,ipt,,B);
ipdf.append((ipt.u, ipt.v,idens));

end

end

guantiles. Using Eg. (10), we calculatec01 andwvec23. vec follows in a similar fashion fof3. dob;0, dobj1, dobj2,
anddobj3 are the density objects associated with each unit cellxarteig. 1.ipdf is returned and is a list of surface
points on the interpolated PDF.

Theevalutate PDF valuestage is a direct calculation using Eg. (13), invoked duiingrpolate quantilesss the
methodevalPDFE

For the finalreconstruct PDFstep, a reconstruction of the PDF surface is performed wsgdtable interpolation
such as those available in SciPy [30] for irregular grid datahis study, we tessellate the input point set to three-
dimensional simplices, and interpolate linearly on eaoipséx.

4. RESULTS

Our implementation was written in Python, utilizing the Bgipackage. All the computations were performed on the
CPU. The computer system used for running the experimergawantel Core i7-3930k with 32 GB of RAM.

4.1 Synthetic Data

We construct a toy example consisting of a unimodal and bahditribution. Our mean parameter(s) for the 2D
PDFs are the mean vectoy = (u,v)”, whereu andv are the components aligned with the Cartesiancoordinate
system. Spherical covariance matrices are used, i.e. otv@iance matrix designation is a multiple of the identity
matrix. The number of samples drawn from each distributso800 when estimating the PDF for interpolation.

The unimodal distribution is defined as

T N Y ar)
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The bimodal distribution is the sum of two bivariate normalsere the first is weighted 0.6 and the second is
weighted 0.4:

N - (18

Ni(pa, 34), g = { :? ] » g = [ 165 1(.)5 ] )

The parameters used for interpolation are in Table 1. Seke Pafor CPU timings. The results of interpolating
between the synthetic PDF are shown in Fig. 3.

4.2 Application

Our ensemble data set covers a region of the Massachusgtts\Blae east coast of the United States of America [10]
and is provided by Dr. Lermusiaux from MIT. The MassachussBty volume in the study was divided into 5390
grid with 16 depths. The depths at thesex630 grid points vary significantly: depths as shallow as 90emseand as
deep as 196 meters were recorded. Our data are represenfatiwironmental studies discussed in [12, 13].

We apply bivariate quantile interpolation to selected gradnts over the spatial domain. We sub-sample at a
quarter of the resolution of the original data, and keep tddédn data points as the “known” distribution to compare
against our interpolants at = 0.5. For velocity fields, it is possible to interpolate over tleenporal-domain as
well. For instance, one could choose the same grid pointitdifferent time steps. Additionally, it is possible to
interpolate over space and time. The interpolation is gdreard applicable to multiple scenarios. However, in this
study, we show interpolation between velocity PDF sepdrayespace for the same value of time.

We choose two pairs of representative examples from thefdateelocity. The first pair is an interpolation well
within the boundaries of the data set (at a dept®®ineters). The second pair is an interpolation that includes
multimodal distributions but is along the boundary of théadset (at the same depth level). These interpolations are
shown in Figs. 4 and 5 and referred to pair 1 and pair 2 in Tabkasd 4.

A third pair of PDF use a vector of temperature and salt cotnagan (see Fig. 6 and Tables 3, 4). The interpolation
was performed at the same spatial location as the first p&Déf These variables were tested for correlation using
the Spearman rank-order correlation coefficient and thalpevto test for noncorrelation [31]. For our data these are
p = —0.3093 andp-value= 8.946 x 10715,

Our metric for the variation between an interpolant and thewkn grid point density estimate is Earth Mover's
Distance (EMD). EMD is a linear optimization initially deeg@ed for supply-demand transportation. EMD minimizes
the cost of transforming one PDF into another by moving mess fone PDF to the other [32]. The transformation
cost between two PDP and( is expressed by the following formulation:

2ij fijdis
Yigfij

whered;; is a pre-defined ground distance between suppléard consumey, andF' = f;; is a set of flows which

defines the amount of mass transported from supplierconsumeyj. We use OpenCV'’s implementation of EMD,

with the L2-distance parameter [33].
The EMD measured for our interpolation examples are listethble 3. CPU performance is listed in Table 4.

EMD(P, Q) = min{F:fij} (20)

TABLE 2: Average CPU timings (in seconds)
in toy example

CDF calculation 139.92
Quantile curve parameterizatign 0.02
Quantile curve interpolation 1.17
Interpolant PDF evaluation 6.22
PDF surface reconstruction 1.18
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FIG. 3: Interpolation from top ¢ = 0.0) to bottom ¢ = 1.0). Left column without surface interpolation. Right

column with surface interpolation.
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KDE Point interpolants Surface interpolation

PDF 1

Known density

Interpolated density

PDF 2

FIG. 4: Pair 1 for simulation data using velocity components. Graistributions represent KDEs at grid points in
data set. Blue distributions represent results of inteparh. The top row (PDF 1) and bottom row (PDF 2) contain the
known distributions used for interpolation. We comparesbeond row density estimate with the third row containing
the interpolant density.

5. DISCUSSION

EMD values measured in table 3 show good results for pair titHeuEMD measurement is higher for pair 2. The
densities in pair 1 follow a smoother transition, while wesgthe bimodal distribution in the second example. Minimal
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KDE Point interpolants Surface interpolation
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FIG. 5: Pair 2 for simulation data using velocity components. Graistributions represent KDEs at grid points in
data set. Blue distributions represent results of inteparh. The top row (PDF 1) and bottom row (PDF 2) contain the
known distributions used for interpolation. We comparesbeond row density estimate with the third row containing

the interpolant density.

EMD difference is measured for surface interpolation alomboth cases. Pair 3 has slightly higher EMD values
overall, while there is still good agreement with the knowaa anterpolated distributions. This discrepancy is likely
due to the slight clipping of the KDE (range values) versesfilhvalue of zero for surface interpolation.
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TABLE 3: Earth mover’s distance measurements for sim-
ulation data shown in Figs. 4-6. We compute EMD for the
interpolant atx = 0.0 in the entries of the row labeled
PDF 1. Similarly, we compute EMD at = 1.0 in the row

labeled PDF 2

Distribution Pair 1 Pair 2 Pair 3
PDF 1 0.397509| 0.473298| 1.040877
Know PDF 0.317712| 0.290578| 0.351446
Interpolated PDF 1.362007| 3.958944| 5.588929
PDF 2 0.542557| 0.729264| 0.568048

TABLE 4: CPU timings (in seconds) for simulation data

Algorithm Stage Pairl | Pair2 | Pair3
Avg. CDF calculation per PDF 154.34| 135.88| 84.403
Parameterization 0.010 | 0.010 | 0.017
Curve interpolation 1.29 1.28 | 0.679
Interpolant PDF evaluation 6.17 6.09 | 5.678
PDF surface reconstruction 1.14 1.31 0.979

It was also found that the number of samples in a density astiincrease CPU time for CDF calculation. This is
due to the underlying implementation of SciPy and is not asisled in this paper.

Various increases in efficiency could be gained by portirgdlnsity object implementation to compiled code.
Interpolating points from quantile curves in parallel op tBPU is another possible way to decrease execution time.
An implementation may also be chosen to store quantile azadailations for increased interpolation efficiency.

Note that the number of quantiles may be less than or equaletmamber requested, as shown in Table 1. A
chosen CDF integration mesh resolution is not always sefficio capture the requested number of quantiles for a
given distribution. Our implementation uses a fixed CDFgnétion mesh resolution.

Relaxing the assumption that quantile curves monotowigatirease might allow better interpolation for cases
where this is not always true. However, most distributidra tve study have densities where this assumption is valid.
In any case, this generality in the algorithm would incremsecution time.

The interpolation methods presented in this paper do notaxtdéor spatial covariance with surrounding grid point
distributions. We interpolate unique surface values oividdial PDFs which do not relate as a whole to surrounding
PDFs when considered in isolation.

Interpolation is inherently ill-posed. The quality of theerpolants are dependent on the smoothness of the under-
lying field. Therefore, procedures for measuring the smoedk of ensemble data sets are important here, but also for
calculating probabilistic gradient fields. Such gradientsnot easily defined for ensembles using finite differeimce.
any case, such analysis constitutes further study.

6. CONCLUSION

We presented a direct extension of 1D PDF interpolationgugimantile interpolation for the bivariate case. This
interpolation is useful for interpolating within randomléis whose components are inseparable, such as 2D velocity
PDF and other correlated random variables. Further studieisualization using interpolation will be facilitateg b
such interpolation. Under circumstances where multipddesdields are interpolated, a univariate approach is loest f
performance and to reduce over-smoothing in density estimgB4] if the fields are uncorrelated.

While Gaussian mixture model interpolation is ambiguoubwéspect to its pair-wise interpolants, we have pro-
vided a better alternative. For 2D vector fields, bivariatargile interpolation is faster than displacement inté&xon
and can be more easily implemented.
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