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A procedure is provided for the efficient approximation of solutions of a broad class of stochastic partial differential
equations (SPDEs), that is, partial differential equations driven by additive white noise. The first step is to transform
the given SPDE into an equivalent SPDE driven by a correlated random process, specifically, the Ornstein-Uhlenbeck
process. This allows for the use of truncated Karhunen-Loeve expansions and sparse-grid methods for the efficient and
accurate approximation of the input stochastic process in terms of few random variables. Details of the procedure are
given and its efficacy is demonstrated through computational experiments involving the stochastic heat equation and
the stochastic Navier-Stokes equations.
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1. INTRODUCTION

In this paper, we attempt to improve the efficiency and accuracy of computations for evolution-type stochastic partial
differential equations (SPDESs) having the form

ug + Au+ N(u) = g(t, %) + o&(t,Z)  in(0,7] x D "
ulfoyxp = uo(Z),  ulor)xop = h(t,T),
where|0, T] denotes a time interval anl € R? is a spatial domain. In (1)4 denotes a positive semidefinite, self-
adjoint linear operatot\” denotes a nonlinear operator acting on the stochastic pra¢esd; ¢(t, ¥), h(t, ), and
uo(Z) denote deterministic data functions,denotes a constant; aigt, ¥) is a space-time random field represent-
ing a stochastic perturbation. Corresponding to the oper&taith zero Dirichlet boundary condition, we have the
eigenpairs(A;, ®;}22, such that) < A; < Ay < ... andlim; .o, A; = oc; the set{®;(z)}32, forms a complete
orthonormal basis ih.? (D).
Certainly, various stochastic perturbatioh@, ) may be defined in a stochastic dynamical system, see, e.g.,
[1-5]. Our interest is in noise having the form

oo

E(tE) =) w;i(t)®;(F)s(t), )

J=1

i.e., the noise is defined by an expansion in terms of the orthonormal eigenfunctions of the linear aferator
here,{;(t)}52, denotes a set of independent and identically distributed Brownian motions. Thus, if the coefficients
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{w;}52, satisfy some restrictions, we have that (2) istedte noise process in timend, in general, has some spatial
regularity whose character, e.g., whose spatial smoothness, is determined by the properties of the caeffitients
Note that one can view (2) as a spectral expansion imthef)s; (1) = ((t, &), ®;(Z)) for j = 1,2, ..., where(, )
denotes thd.?(D) inner product.

A specific example of the forn2] process is th€)-Wiener procesg6]. Suppose) is a symmetric non-negative
operator, and for the sake of convenience, we assumé}taat A in (1) have the same eigenfunctiof®; () }52,
and eigenvalueg); }2 ;. In this case the random process represented by the expansion

W(t.&) = 3 VA2;(@s () 3)

is a Wiener process with covariance operdjoil here have been a number of papers devoted to discussing the SPDEs
involving dW; see, e.g., [7—12], where the definition of the notatid¥i can be found in [6].

In this paper, the process (2) is approximated in terms of a finite number of independent Brownian m@tjons
j=1,...,N,through truncation, i.e.,

En(t.3) = 3wy (1) (2)6 (1) ~ E(t, D). (4)

Note thaté(t, ©) = limy_.~ En(t, X); See, e.g., [13]. Processes of the form (2) and its approximation (4) are used
in spectral Galerkin approximations of SPDEs such as (1), in which the approximate solution of the SPDE is also
expressed in terms of a finite sum of the orthonormal eigenfuncfi®éz)}, i.e., one hasi(t, ) ~ un(t,Z) =

Z;V:l u;(t)®;(Z); see, e.g., [14-16].

“However, in practice, there is a general lack of knowledge about stochastic dynamic systems, including the nature
of stochastic inputs. For example, the coefficient function&) in the stochastic input (2) are not always known in
practice. Itis natural to then investigate specific simple stochastic processes that preserve the essential aspects of more
general processes. Thus, we consider specific, time-independent casgg for

Crucial to our approach to finding approximate solutions of (1) is knowledge of an auxiliary stochastic process
that satisfies an SPDE related to (1) but for which the correlation function can be explicitly written. In particular, we
consider the Ornstein-Uhlenbeck (OU) procaés Z) that formally solves the stochastic parabolic equation

{Th+Anm+GﬂL@ in (0,7] x D -

Nlgoyxp =0, Mo, r1xop = 0,

wherea > 0 is a constant. The OU process is a correlated random field in time. As such and as we discuss in this
paper, it can be approximated more accurately and efficiently compared to the white noise §foagss
It is not difficult to show that the integral solution of (5) is given by

t
muﬁzo/e*MMWﬂﬂ&@%. (6)
0

Using the definition (2) ot (¢, Z), we have

0

n(t, ) = oiwﬂt)@j(f) / t e NHI=9g5 (s)ds. (7)
j=1

From this explicit solution, the space-time mean and covariance functigft,af) can be explicitly deduced; see Sec-
tion 2.2. Consequently, the OU process can be expressed in terms of a Karhavenekpansion whose truncation
provides an efficient means for determining approximations of the OU process; see Section 2.2.1.
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By settingu = v +n in (1), we obtain the equivalent SPDE

{ v+ Av+N(w+n)=g+an in (0,7) x D @®

vl{O}XD = ’U/O(f)a vlaD = h(taf)a

for the random field:(t, ). Note that (1) is driven by the white (in time) stochastic prodg#sz), whereas (8) is
driven by the colored (in time) stochastic process &). Of course, the former appears in (1) simply as an additive
forcing function, whereas the latter appears in (8) within the possibly nonlinear\ériras well.

The advantage of solving (8) instead of (1) is that becayiser) is acorrelated(in time) random field, one can
use one of several effective numerical tools available for discretization that are not appropriate for discretizing white
noise random fields. For example, one can use stochastic collocation methods based on sparse quadrature rules [17—
24] or polynomial chaos methods [25-29]. Thus, such tools can be used to determine approximations of the stochastic
process(t, Z), and eventually(t, ), avoiding the direct discretization of the white noise random figtdz).

Actually, the effectiveness of numerical methods for determining approximations of an SPDE is usually dependent
on the dimensionality of the involved probability field, i.e., the computational complexity is dominated by the number
of degrees of the freedom needed to adequately represent the random inputs. Therefore, in practice, one of the basic
ideas for reducing the computational cost is to develop a good low-dimensional approximation to the probability field
without engendering much loss of accuracy. After converting the system perturbed by the white tockseequiva-
lent one perturbed by the colored noigeve have means for determining such “low”-dimensional approximations so
that a reduction in computational cost is effected.

The paper is devoted to providing details about our approach as well as the results of computational experiments
that illustrate the efficiency gains. In Section 2, we first discuss direct approximations of white noise random fields
such asé (¢, &), provide additional details about the Ornstein-Uhlenbeck progéss’) derived fromé&(t, Z), and
discuss how the OU process is approximated using truncated Karhumieme-egpansions. In Sections 3 and 4, we
illustrate our approach by applying it to a stochastic heat equation and a stochastic Navier-Stokes system, respectively.
Concluding remarks are given in Section 5.

2. FROM WHITE TO APPROXIMATE COLORED NOISE RANDOM FIELDS

In this section, we provide details about how we “convert” a white noise random field into a correlated random field,
and how both types of fields are approximated.

2.1 White Noise

We first discuss the white noise stochastic process defined by a spectral (or Fourier) expansion in terms of a basis for
L?(D), whereD € R? denotes a bounded spatial domain. An example of such a process is given by (2).

Let {¢,;(Z)}52, denote an orthonormal basis féF (D) or for a subspace. Lef;(t)}52, denote a set of i.i.d.
one-dimensionaBrownian motionr Wiener processewith respect to time. We consider the infinite-dimensional
random process given by

Rt @) = 3 wi (Dd5(F)< (1), (9)

where the coefficient§w; (t) }52, are such that the convergence of the series is guaranteed.
Clearly, the noise is white in time if the coefficients); }52, are constants and, by the definition of Brownian
motion, u(¢, ¥) satisfies

Efa(t, 7)u(s, 7)) = 3wy (0w (5)(0(2) 85t = 9),

where eachd; denotes the Diraé-function andE[-] denotes the expected value. Depending on the choice of basis

{d;}52, and the decay rates of the coefficiefts; (¢)}32,, the noiseu(t, ¥) may represent very different spatial
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behavior. We illustrate this through the two examples given below. To simplify our problem, we assume that the
elements of the seftw; }52, are independent of time. We note that the behavior of the particular noise processes we
report here resembles the results given in [4], except for a larger magnitude of oscillations.

Before proceeding to the examples, we first introduce a direct approach for approximating the infinite-dimensional
space-time random field(¢, Z). Note that we have to consider both the infinite dimensionality of the sum in (9) and
of each of the one-dimensional random proce$sg$) } 32 ;. As in (4), we truncate the sum in (9) to the firétterms
to obtain the approximation

N
(t.7) = Z w; () (@) (1) ~ w(t, ). (10)

To approximate the finite-dimensional white noise random f@gis _, appearing in (4), we consider a direct,
grid-baseddiscretization approach described as follows. We partition the intérval by means of the point&;, =
kAt}  with At = T/M. Then, each of the time-dependent white noise random figlds j = 1,2,..., N, is
approximated by the expansions

1 M M M
Sim(t) = — g =1/ — ()i = <i(t), i=1,2,..., N, 11
5,0 (t) \/Ztkz::l)(k() gk =/ T;Xk() J.k 5 (t) J (11)
wherea; , ~ N(0,1) denote i.i.d. standard Gaussian variables &rg(t)}2L, denotes the set of characteristic

functions given by
. 1 iftetko1,tr)
Xn(t) = { 0 otherwise.

Thus, each infinite-dimensional random figldt) is approximated in terms af/ random variablegc;  }2. , and
the space-time random field ¢, Z) is approximated by

M
FLNM (t,7) \/>ij ¢)J ZXk Xj ke = w(t, 7). (12)

k=1

A realization of this approximation requires the sampling of MiéV i.i.d. random variables; , ~ N(0,1), j =
LN, k=1,...,M.

Example 1.

Let {¢;}32, denote the trigonometric basis;(z) = V2sin(jrz), j = 1,2,..., defined onL?(0,1) and letw; =

1/27 or 1/5%/2. Realizations of the approximate noise (12) are given in Fig. I'fer 1 andM = 200 for each of

the two choices fotv; and for four choices oiN. Plots are provided fony (1, ) andpy, ar(t,1/2). Clearly, the
approximate noise is highly uncorrelated in time, as is expected given that we are approximating white noise in time.
The approximate noise is highly regularized in space. Moreover, we see that there is a higher degree of smoothness
for w; = 1/27 than forw; = 1/4%/2, which is to be expected because of the faster decayjraseases, of the first

choice relative to the second.

Example 2.

We consider a special case of the random figld Z) introduced in Section 1. Specifically, we ldt= —vA with a
Dirichlet boundary condition, where > 0 is a constant and\ denotes the Laplace operator. As in Section 1, we let
{Aj, ®;(¥)}32, denote the eigenpairs of the operattyri.e., forj = 1,2,..., we have

—VvA®; =\;®; inD and  ®;|pp =0.

Because-A with a zero Dirichlet condition is self-adjoint and positive definite, we Have Ay < Ay < A3 <
andlim; . A; = co. Furthermore{®;()}32, constitutes a complete orthonormal basisfét D). Hence, we can
define a random process having the form (2), or equivalently, the form (9), and approximate it using (12).
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FIG. 1: Realizations of the approximate space-time ngisey (¢, ) given in (12) ford; (x) = v/2sin(jrz) and for
w; = 1/27 (left two columns) andv; = 1/53/2 (right two columns).

In particular, letD be the unit square. Then, the eigenpairs are known to be, far=1,2,.. .,

2

Ao = v(n? +m*)m and D, (21, 22) = 2sin(nmwz) sin(mmzs), (13)

with x1, zo denoting the components &f
We now sort the eigenpaifd\,, ..., ». } via a two-dimensional multi-indek= (I1,l>) € NZ with the norm

W2 = /1 +13, (14)

The resulting noise is then given by

E(t, w1, w0) Z w1 Py (w1, 22)<1(1). (15)
1eN3
and is approximated by
Ex (w1, 32) \/ Z w®y(z1, T2 ZXk )ou k- (16)
|1‘z2<N

Therefore, with the appropriate relations between the components of the multiltinddy and betweerV and N,
(15) and (16) are of the form (9) and (12), respectively.

For the computational illustration, we set= 0.001, ¢ = 0.1, N = 100, M = 200, andw, = 1/|13/* or
1/[1%. Figure 2 illustrates realizations of the approximate nosg ,,(t, x1, 2), wheref i (1,21, x2) is given in

(16); specifically, we showé 5 (1,21, 72) andcraNM(t 1/2, 1/2) Again, the noise is (dlscretely) white in time
and regularized in space, with the smoothness being more prominent in the plot in the right column, which again
corresponds the choice af having the faster decay.

2.2 The Ornstein-Uhlenbeck Process and Its Approximation

We now consider the Ornstein-Uhlenbeck proaggs) defined by (5). We first formalize results given in Section 1,
all of which can be verified by direct substitution.
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FIG. 2: Realizations of the approximate space-time noi&g ,,(t, z,y) given in (16) fort = 1 (top row) and at the

point (1/2,1/2) (bottom row) forw, = 1/|1°

12/2 (left column) andw; = 1/[1]% (right column). It can be seen that the

faster the coefficients, decay, the smoother the noise presents in space.

Let A denote the operatervA with zero Dirichlet boundary condition. Then, by the orthonormality of the basis
{®,} and 1©'s formula, we have, for any non-negative integer

t
0

Ell A, A = E | | 0 wdd; [ Ot s
j=1

00 t

o > Ny [0
. 0
J'=1

o0

oo

2 20, 2
o E ?\j wj
j=1

o2 Z A
j=1

+ 2
E K/ e—(hj+a>(t—s>¢jds> ]
0

t
?L]wf/ o200 +a)(1-5) g
0

o~ WA 2t(A;+a)
-G 17T (1 — e 2tOta)),
j; 2(?\j + a)
Thus, if
> wIN T < oo, 17)
j=1
then
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02 0 2420—1
EllA™Z2(p) S?Zw Aj

Thus, we have proved the following convergence result about the OU pngp@ess.
Theorem 1. If (17)holds, therE[||A'n|2, 5] < oc.
Setting? = 0, we have the following result.

Corollary 2. If

SN

. w?
Yoo < (18)

j=1"7
then E[In 132 )] < oo.

Theorem 3. [6] If (17) holds, the solutiom(t, Z) of (5) is given by(6). Moreover,E[n] = 0. In particular, if
&t 7)) = Z‘f:l w;®;(Z)s;(t), where—vAD,; = A;®; with ®;|5p = 0, then the OU process(t, %) is given by(7).

From the definition of covariance functi@ov(-, -), we have that the covariance of the OU proaggs¥) at each
pointZ € D is given by

Cov(n(t,Z),n(s, )

oo

t
=o> Y E K /0 e<M+a><tt’>qu>j(f)<j(t’)dt'>
1

(/ 6_(N’+a)(5—5/)wj‘1’j'(f)ij’(sl)dslﬂ
0

¢
-\ 2 - a —(A;i+a)(s—s') -
= o? g w?(fbj(x)) E [/0 Pgta)(t—t)¢ Si(t )dt'/o (Agta)( )gj(s’)dsl}

t s
))2e—<xv‘+a><t+s)E{ / et (¢ )at! / e<M+“)S'<'j(s’)ds’]
0 0

I
ql\')
™
8
=)
2

so that

Cov(n(t, #),n(s, 7) 22 }\ +a (e~ Outalli=s] _ o=(ta)(t+a)y (19)

Settingt = s in (19), we see that the variance of the OU proaggsz) at any pointt € D is given by

Varfn E B;® (20)
whereVar[-] denotes the variance,
) W 2(A;+a)
;= 4 and (1) =1— e 2Nt
B] o 2(}\] + a) 9 e]( ) €
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For a normally distributed random variabe ~ A/ (0, 62), one has
E[|X[*] = o (2p — DL, (21)

Note that the OU processis a stationary Gaussian process having a normal distributidb.i$fa bounded region,
then, based on élder’s inequality and (21), we observe that

p/2 p/2
E[IInIIi’iND)] (2p — 1)1 Z [5J<1>2ej O py < (2p—1)! (Z B]) /D (Z ﬁj@?) dzx.
j=1

j=1

Therefore, ifp = 2 and®; € L*(D) for all j, we obtain

2
Ellnlla ) <3 B Y. Bj||¢j||i4(D) <C (Z Bj) < 00.
j=1

j=1 j=1
In particular, forD the unit square, we have from (13) thd} € L*(D) so thatn is well defined in the space
m : ElImllzap] < oo}
2.2.1 Karhunen-Loéve Representation of the OU Process

We specialize to the case of the OU process results that hold for general random fields having continuous covariance
functions that are symmetric and positive definite. The key step in deriving these results is the application, at each
Z € D, of Mercer’s theorem with respect to the variablesds; see, e.g., [30] for details.

Consider the problem of determining pa{rs (Z), V¥, (¢, ¥) }$2, that satisfy

/T Cov(n(t,Z),n(s, Z))bi(s, D)ds = T;(Z); (¢, Z), i=1,2,.... (22)
0

From (19), we have thanv(n( Z),n(s, )) is positive-definite and symmetric with respecttands. Then, it can
be shown that such a sgt; (), V; (¢, )}°°1 exists that satisfies

1 ifd =i

T
/0 xpi(s,x)wi/(s,x)ds:éw={0 o

and
Tl(f) > Tg(f) > T3(f) >--->0.

It easily follows thatCov (n (¢, Z),n(s, Z)) has the eigendecomposition

Cov(n(t, 7 ZTZ (@i (t, D)i(s, )

from which one has
Var(n Z (T

It also follows that the OU procesgt, ¥) has theKarhunen—L@ve expansion

Z V@it 7) G, (23)

where{(;}5°, areuncorrelatedstandard Gaussian variables; (23) is simply the decompositigf¢of) in terms of
the elgenpalrs{n( %), P, (t, T)}52, of its correlation matrix. Thus, the KL expansion (23) provides a second way, in
addition to (7), for expressing the OU process.
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2.2.2 Approximation of the Ornstein-Uhlenbeck Process

A computable approximation to the OU process can be defined by truncating its KL expansion (23). Thus, one de-
termines the dominan¥y, eigenpairs{n(a‘:‘),wi(t,j’)}fif? of the covariance function (19) and then defines the
truncated KL expansion approximation

Nk
Mg (68) = D> /(@i D)8 ~n(t, ). (24)
=1

Of course, the KL eigenpairs can also only be determined approximately; one can do so by discretizing (22) using
a finite element method for spatial discretization and a quadrature rule for approximating the integral. We note that
truncated KL expansions are in common useréatuced-order modelinROM) of deterministic systems [31, 32].

Most of the properties of KL approximations for deterministic ROM also hold in the current stochastic setting. For
example, the Galerkin projection gft, ) onto the space spanned by the basis func{ibn}fi? is, in the Fourier

sense, a best approximation [30].

The effectiveness of (24) as an approximation to the OU progésg’) is of course dependent on the rate of
decay of the KL eigenvalues;(¥). Figure 3 depicts thd?(D) norm of the first 25 KL eigenvaluebt;(7)}72,
corresponding to the OU covariance function (19)oas- 1. That figure also depicts, faVx;, = 1,...,25, the
correspondingnergy ratio

o = i Iillao)
o Y Imilleeo)
that is used to measure the amount of information or “energyf afaptured” by the firstVg; orthonormal basis
functions, i.e., b){xpi}fif?. The denominator in (25) is approximated by summing ave >> 25 terms. Obviously,
|Ti(Z)]| 2(p) is almost identical to zero as> 10, which implies thaty ", ||;|| .2(p) could be approximated by
summing over the leading 10 terms{dfr; (%) | z2(p) }:2;, not to mention 1000 terms.

One can use (25) to select the valueNdf 1, in the KL approximation (24). One simply selects a desired value
e for the energy ratio and then selects the smallest intdger such thatey, , given by (25) is greater that Our
simulations result is > 0.96 for = 0 andw; = 1/|1/% ande; > 0.97 for a = 1 andwy = 1/|13/°. Clearly,
most of the energy of the OU procesé&, Z) can be captured by a very limited number of eigenfunctions. Thus,

(25)

02 | —— a=1, w=1/I3%|{
! 0.99
0.18} —6— a=0, W|:1/||||2 d
0.16 0.98
0.14f
o1zl 0.97
~N =
£ o01f 19
0.96
0.08}
0.95
—%—a=1, w=1/|I|¥°
0.94 | [k
—oe—a=0, w=1/|||3

5 10 15 20 25

NKL

FIG. 3: TheL?(D) norm of the first 25 KL eigenvalues and the energy ratio (25):fer 0 andw; = 1/|1|% (circles)

and fora = 1 andw, = 1/|1/%/* (asterisks).
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the feasibility of the KL approximation (24) with relatively small values/of ;, is demonstrated. The importance

of this observation is that the infinite-dimensional OU proag3sz) can be accurately approximated by tNe ;.-
dimensional processy,, (t, %), i.e., by a process involving only th¥;, uncorrelated variable$t; } 5. As a

result, the computational cost of simulating a stochastic dynamic system involving the random(ihpit e.g.,

the system (8), can be substantially economized by using the relative low-dimensional approximation that (24) can
provide.

To obtain a realization of the approximate OU process (24) one merely has to sample values for the random
variables{¢;}Y5* . In Sections 3 and 4, we use such realizations as inputs for discretized versions of the modified
equation (8) so as to obtain approximate realizations of the randomvfigld). In this section, we want to examine
the accuracy of statistical information, specifically statistical moments, obtained using (24) as an approximation to the
OU process. Theth statistical moment is approximated by evaluating\gg; -dimensional integral, i.e., we have

E[(n(ui"))r] ~ E[(TIKL(t"f))r] = / (nKL(tvf))rdp(Cl)'"dp(CNKL)? (26)
RNKL

wheredp refers to the Gaussian measure. One has to further approximate by discretizing the integral in (26). For ex-

ample, approximations to the statistical moments of the OU process may be determined Wi¥igr atimensional

guadrature rule to approximate the integral appearing (26){@@1}22:1 denotes the quadrature weights correspond-

ing to the quadrature poinfiq}?zl, where( denotes the number of quadrature points and WE@@RNKL. Then,

we obtain the approximation

Nkr

Q ,
E[(n(t,2)"] = E[(nxr(t.2)"] = > wq( Z \/ui(f)xpi(t,f)ci,q) (27)

for therth statistical moment af x 1 (¢, Z), where{(; ,} V5% denote the components &f.

The accuracy of the approximation defined in (27) depends not only on how many terms are kept)Mze:, tait
also on the quadrature rule used. For moderate valudsgf(certainly forNx; < 10), using an appropriaf@™V«« -
dimensional Smolyak quadrature rule is a good option; in our setting, a Smolyak rule based on the one-dimensional
Gauss-Hermite quadrature rule is appropriate. See, e.g., [18, 33] for details about the Smolyak quadrature points
and weights. In this case, we refer to the approximation (27) as the KL-Smolyak, or more succinctly, the KL-S
approximation to the OU process. In the seqqéi,,“ denotes the Smolyak quadrature rule witly ;, random inputs
and levelk accuracy.

To examine the accuracy and efficiency of the KL-S approximation, we compare it with the direct approximation
of the defining system (5) for the OU process. Note that this requires the approximation of the white noise random
input field&(t, Z), e.g., by an MC approximation of the type (12). Of course, we would not use such a approximation
of the OU process to solve (8) because, if one is willing to discreiizer), one can discretize (1) directly with
no need for introducing the OU process. In fact, this is exactly what we want to avoid doing. So, we only solve (5)
directly using a white noise discretization in order to evaluate the efficacy of the KL-S approximation.

Determining the KL-S approximation of the OU process requires the “off-line” determination éf thedomi-
nant KL eigenpairg;(Z), P (¢, :E)}fi’?. After that, to obtain statistical information about the approximate OU pro-
cess simply requires the evaluation of (27). Note that because one is able to exactly determine the covariance function
for the OU process, one completely avoids having to solve the PDE system (5) in determining the statistics of the
KL-S approximation of the OU process. This should be contrasted with using direct discretization of (5) by an MC
method for which one has to solve that system of PDESs to obtain realizations of the approximate OU process.

We introduce the following error measures for ttie statistical moments of the OU procegs, Z):

Eie(t) = [[EM"] — EMyrelllzz oy, Efr(t) = [EM"] — EMkLlllz2(p) (28)

and
T

T
Bl = / Fotd,  EL = [ B @, (29)
0 0
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where(-) y ¢ refers to the direct solution of (5) by a Monte Carlo method whefeas, refers to our KL-S approach.
Note thatE[n"] can be determined exactly because we have an explicit solution for the OU pnétess

Figures 4 and 5 provide plots of the errdi@g andEIng forr = 1,2,3,4. For the KL error, the level 3 Gauss-
Hermite Smolyak rul&)3; , Isused withNg,, = 1,...,11. The errors are plotted against the total number of points
sampled, i.e., the total number of realizations of the approximate OU processes used to estimate the errors. The two
figures correspond to the two choices= 0 andw; = 1/[1/% (Fig. 4) and fora = 1 andw; = 1/|1/%/* (Fig. 5). The
results indicate that similar to the use of KL expansions in deterministic cases, the efficiency of KL expansions are
determined by the decay rate jof(%); also, the accuracy of the moments is proportional to the dimensionality of the
random inputs. For the first and third statistical moment, whose exact values are identical zero, the KL expansion can
provide an excellent approximatior (10~1°) by the properties of the quadrature rule. The dominated errors are thus
the round-off errors at the quadrature points, which explains the beha\zEﬁ’pfaST =1,3.

Note the stability of the KL approximation. Taking the fourth moment as an example, froﬁ%,computed for
the sample sizé00 is smaller than the ones obtained with) samples or everi00. E]T(i is monotonically decreasing
as the number of samples increases.

Now that we have demonstrated the high accuracy of the KL-S approximation of the OU process, we proceed
in the next two sections to use that approximation to determine approximations of the given system (1) by instead
solving the the modified equations (8).

3. STOCHASTIC HEAT EQUATIONS

In this section, we use the OU process to transform a stochastic heat equation driven by white noise into one driven
by the OU process. As a result, to determine approximate solutions of the stochastic heat equation we can use the KL

Smolyak rule MC method
T T T T T T
—%—E
KL 13k ]
-16 . T3 ’
Bt
Eg 14+ .
< -165
vO
o
o -15F b
=17
-1.6 N
-17.5
1.5 2 25 E"g 17k |
) EY _
Iogw(# points) w
o
o
2 _18f .
-1.6
-1.8 -19 1
s -2
E o I ]
e —22 -2
=
g -24
- =21 [ N
26 5 T2
Bl
_ TA 29 H 4
2.8 E KL 2.2
: : | | | |
1 1.5 2 25 2 22 24 26 2.8 3
Iogm(# points) Iogw(# points)

FIG. 4: Comparison of the KL-S (left) and MC (right) approximations of the OU progésst) witha = 0 atT = 3
for wy = 1/]1|%.
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FIG. 5: Comparison of the KL-S (left) and MC (right) approximations of the OU progésst) witha = 1 atT = 3
2
for wy = 1/[11%/>.

approximation (24) of the OU process to effect a discretization of noise instead of relying on a discretization of white
noise.
Consider the stochastic heat equation for the randomdigldz) given by
{ut—VAu:f—i—GE for (t, %) € (0,T] x D (30)

uli—g = ug forz e D, ul(o,11x0D = 9>

whereg(t, Z) is the white noise (in time) random field given in (2). Of course, (30) bears a strong resemblance to the
defining equations (5) for the OU process, except for the nonzero deterministic data fugctforemdug in (30)
and the term-an in (5). Thus, we will use the OU process for which the data functions vanish and for which one can
explicitly write the correlation function [see (2.2)] so that one can define KL approximations.
Letu(t, ¥) = v(t, Z) +n(t, Z), wheren(t, ) denote the OU process satisfying (5). Then, (30) is equivalent to
vy —VAv = f+an for(t,Z) € (0,T] x D (31)
’U|t:0 = Ug forz e D, U|(O,T]><6D =g.

Unlike (30) which is driven by the white noise random fi€l¢t, ), (31) is driven by the correlated OU process
n(t, ). We then discretize the noisgt, &) by using its truncated KL expansioyy,, (¢, Z) given in (24).

The simple example we use has the spatial doniaipe the unit squarel’ = 1, v = 0.001, f(¢,Z) = 2(1 +
kr2)e? sin(ma ) sin(maa), g(t, &) =0, uo(F) = sin(wz, ) sin(z,), and noise parameters = 1/1%/* ando = 0.5.
The corresponding exact expected value of the solutioh(30) is clearly

Efu] = e* sin(nz; ) sin(7ray).
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Temporal discretization is effected using the Crank-Nicolson schemeAwite= 5 x 10~3, whereas a continuous
piecewise-quadratic finite element method based on a uniform triangulatidnsadsed for spatial discretization; the
grid sizeh < 0.007.

We use the MC method to approximately solve the given stochastic heat equation (30) with the saniplé size
Specifically, in addition to the temporal and spatial discretization, we discretize the white noise (in time) random
field &(t, Z) as in (12) and then perform 500 realizations of the resulting discrete system. Each of the 500 realiza-
tions requires the sampling of theg N standard Gaussian parametets,. This provides a direct approach toward
approximating the solution of (30).

We also use the indirect approach of solving for an approximation of the solutdi31), then adding to it the
KL approximation of the OU process to obtain an approximation of the solut@{30). To obtain the approximation
of v, we use the&)3 Smolyak rule, for which the resulting sample sizé1is

Results for the two approaches are presented in Fig. 6. Specifically, for the comparison, we compute the error
measures, ~(t) and E'’ (t) for the random fieldu(¢, ¥) defined in (28) withr = 1. The results suggest that
compared to the MC method, the KL expansion combined with a Smolyak rule has the ability to approximate the
expected value of the solution of (30) effectively by solving a relatively small low-dimensional system.

We also compare theth statistical moments for = 1, 2, 3, 4 obtained by the MC method and KL expansions by
defining the difference measure

T
€ = / |E[(unre)] = El(ur) 2 (p)dt, (32)

whereE[(uy¢)"] andE[(uk 1, )"] denote theth statistical moments obtained by the MC method and KL-S expansion,
respectively. In Fig. 7, plots a#" are given with KL-S approximation fixed to @ and for different MC sample

sizes. For our example problem, an examination of Fig. 7 shows the reduction in diffefensete that the MC

solutions tend to approximate the exact stochastic solutions as the sample size increases and Fig. 7 shows that the MC
approximation also approaches the KL-based approximation as the MC sample size increase. Thus, the effectiveness
of the low-dimensional approximation based on KL expansion is verified for higher-order statistical moments as well.

4. STOCHASTIC NAVIER-STOKES PROBLEM

In this section, we use the OU process to transform a two-dimensional stochastic Navier-Stokes (SNS) system [34]
driven by white noise into one driven by the OU process. Because of the continuity equation and the nonlinear

3
500 MC method <107 Q; Smolyak rule
0.025 4
35
0.02
3
__ 0.015 _ 2.5
ng UF 2
0.01 15
1
0.005
05
0 0
0 0.5 1 0 0.5 1

t t

FIG. 6: Comparison of the error measurement for the MC (left) and KL-S (right) methods for determining approxi-
mation of solutions of the stochastic heat equation; 500 MC samples are taken for the left plot and 5 KL modes and a
level 3 accurate Smolyak rule (resulting in 61 samples) is used for the right plot.
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FIG. 7: The differencee! given in (32) forr = 1, 2, 3, 4 (left to right and top to bottom). The MC approximation
upsc Of solutions of (30) are for the sample siz&s= 50,100, 150, .. .,500; the KL-S approximation is obtained
using 5 KL modes and a level 3 accurate Smolyak rule.

convection terms in the Navier-Stokes equation, the OU process appears in the modified equations in ways other than
as a simple additive forcing term.

Lettingu = (u,v), P, and® denote velocity, pressure, and temperature fields, respectively, we consider the
nondimensionalized system holding in a bounded domain R? over the time interval0, 7]

U —vAuU+ (u-V)u+ VP = 0§

0: +u-VO =«kA0 (33)

V-u=0
along with boundary conditions, whef is a bounded subset &?. In (33),& = (&1, &2) is a white noise (in time)
vector with independent components defined by (&5} diag(o, 02) accounts for possibly different variances in
different directions, ané andv represent the temperature diffusivity and fluid viscosity, respectively. For simplicity,
we consider only one-way temperature-momentum coupling.

In our computational example, we again assume that the domain is a square and that the velogitsafisithes
on the boundary. The initial condition foris given indirectly via vorticityw = v, — u, which is initially set to

w="ry {O - ;zsexp(—W)] , (34)

wherey > 0 is a constant](Z) = {1 + ¢[cos(4mz) — 1]}, andC'is a constant such thg}, w(z, y)dzdy = 0. Then,
the initial condition foru = (uy, us) is determined by solving

7AU1 = (,Uy, U1|3D = 0
Aug = Wy, 712|8D =0.

A plot of the initial velocity is given in Fig. 8. A horizontal layer is centeredjat 0.5 whose width is determined
by the parameters ande. According to [34], a$ tends to zero, the initial vorticitw will become a flat vortex sheet
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initialvelocity,u0 initial temperature, 90
1 1
. 1
0.8 0.8
; 0.5
06 | 0.6
> > 0
04 - 0.4
: -0.5
02} 0.2
: . 1
% 05 1 0 05 1

X X

FIG. 8: Initial velocity (left) and temperature (right). The sharp transition between temperature layers is due to the
small value ofb.

with some perturbations having size determined b our computational examples, we set 0.005, 6 = 0.025,
ande = 0.3.
The initial condition for temperature is given as

Hs(zs — 0.5) if 25 < 0.4
Go(xl, 3?2) =<1- 2H5(1‘2 — 025) if 0.4 < x5 <0.6
7H5(075 - x2) if ) Z 06,

whereH; (x) is the mollified Heaviside function

0 if v < —6
) i ) .
Hy(x) = x; + Sm(;r:/ )it lz| <8
1 if x> 9.

Figure 8 shows thal, has four smoothly connected layers symmetric with respect te 0.5. The thickness of the
interfaces between any two different layer$.s

Instead of directly discretizing the SNS system (33), which would necessitate approximating the white noise
random vector field,(¢, £), we setu = v + 1 and instead discretize the modified system

vi —VAV+ (v+1)-V(v+1)+ VP =an
0+ (v+m) VO =«kAB (35)
V<V+ﬂ) =0, V|t:0 = Ug,

where each component gf= (11, 12) satisfies the OU system (5). In additionyanishes on the boundary.

In our computational examples, we choose- k = 0.001, o = 0.05, andT = 1.3. The system (35) is solved
for @ = 1 and via approximating the componentstphby KL-S expansion using th@3 Smolyak rule, resulting
in a sample size of 41. In addition, the finite element method based on Crank-Nicolson method is used. The mean
value and the variance of bothand6 are plotted in Figs. 9 and 10, respectively. From those figures, we see that
through convection by the velocity, the sharp interfaces in the temperature field are smeared. A clockwise rotational
vortex is formed. The structure of the variance of the temperature is similar to that of the mean value. Our results
also correspond to those obtained by [34] in that the random perturl#aticts like an extra random diffusion for the
mean equation and the random processasdf are obviously not Gaussian processes.

To verify the accuracy of the KL solutions, analogous to (32), we introduce the following difference measurement:

T
& = /0 {”E[(ULMC)T] — E[(u1,xL)"lllL2(p) + El(u2,mc)"] — E[(u2,x )"l L2(D)
+E[(O1c)] ~ El(8x1) Ml2(p) .
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FIG. 9: Quiver plot of the expected value of the velocity field (left) and the contour plot of the expected value of the

temperature (right) at= 0.5, 1, 1.5.
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FIG. 10: Quiver plot of the second moment of the velocity field (left) and the contour plot of the second moment of
the temperature (right) at= 0.5, 1, 1.5.
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The MC expectations are obtained using 200 realizations. From Fig. 11 one sees that to reach a similar accuracy as
that obtained with 41 KL-S realizations, the direct MC approach needs hundreds of realizations. Thus, for the two-
dimensional Navier-Stokes/temperature system considered here, it is clear that at least for short time integrations, the
KL-S approximation is more efficient than the MC method.
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asm = 1,2, 3, 4.

5. CONCLUSION

Obtaining precise statistics about solutions of nonlinear SPDEs driven by white noise in the form of (2) is, in general,
very costly due to the large number degrees of the freedom needed to represent the random inputs. In this paper, via
the OU process (5), we show that the white noise can be “regularized” into a Gaussian colored noise so that a low-
dimensional stochastic system (8) can be determined by using the truncated KL-S expansion (24). We consider the
stochastic heat equation and the stochastic Navier-Stokes Boussinesq system as our linear and nonlinear examples,
respectively. Numerical tests are given. The convergence of the Monte Carlo solutions to the KL-S solutions in both
examples suggests the accuracy and effectiveness of our algorithm.

For the SPDEs (1) defined on arbitrary spatial domains, the eigenfunctighisafe to be determined numerically.
However, taking into account the low-dimensional approximation to the transformed equation (8) that the truncated
KL-S approximation can provide, our algorithm is still, in most cases, more efficient than approximating the SPDE
(1) directly.

We also note that our approximation is based on the KL expansion at every point in the spatial region, i.e., we
approximatey(t, ) by nx (¢, £) at every pointt in the domain. However, according to the definition of the KL ex-
pansion, the derivatives ofx 7. (¢, £) may not give a good approximation to the random proeg$s ) orn, (¢, Z).

To avoid this difficulty, in our stochastic Navier-Stokes Boussinesq test, for example, we construct KL approxima-
tions ofn, (¢, #) andn,(t, ¥) directly instead of differentiating x 7, (¢, ). This can be understood as constructing a
probability space spanned by the random variablas (o, . . ., Cn,.,, } such that the the random processés ),

N (¢, £), andn, (¢, ) can be well approximated by the KL expansion (24).

We note that much of our consideration can be extended to a variety of similar SPDESs, e.g., the Cahn-Hilliard
equation and reaction diffusion equations. Thus, future investigations in such related fields are called for.
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