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We propose a new method for sampling from a stationary Gaussian random field on a grid which is not regular but
has a regular block structure, which is often the case in applications. The introduced block-circulant embedding method
(BCEM) can outperform the classical circulant embedding method (CEM), which requires a regularization of the irreg-
ular grid before its application. Comparison of BCEM vs CEM is performed on typical model problems.
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1. INTRODUCTION

Uncertainties are often modeled using stationary Gausisiais [1-5]. Efficient generation of samples from statignar
Gaussian fields is crucial for using Monte Carlo technigwdsch are the backbone of uncertainty quantification
simulations, in studying the behavior of systems subjectricertainties. There are a few numerical techniques for
sampling Gaussian random fields on a grid. For instance, andirnd a square root of the corresponding covariance
matrix using Cholesky’s decomposition and then multiplythe square root by a vector of independent Gaussian
random variables to simulate a sample. This is an exact rdgllubit is rarely used in applications due to the high cost
of Cholesky’s decomposition in high dimensions. Anothesgiility is the Karhunen-Loeve expansion (see, e.g., [6,
7]), which requires knowledge of eigenvalues and eigertfans of the covariance operator for the Gaussian random
field. In many cases of practical interest the eigenvalublpro has to be solved numerically, which can be expensive,
especially when eigenvalues decay slowly. Also, this megteaot exact. The fast and exact method of generating
large samples from stationary Gaussian fields on regulds gsi the circulant embedding method (CEM) [8-10],
which is widely used in various uncertainty quantificati&iQ) applications such as groundwater flow simulation
[6, 11], weather field forecasting [2], and liquid compositelding processes [12]. The two main drawbacks of CEM
are (i) the requirement imposed on the grid to be regulareniniegular grids of a block structure naturally appear
in many applications (see three typical examples below)(@hthe need to deal with nonpositive definiteness of
circular embedding matrices, which often occur in pratépgplications. The remedies for the latter were considered
in [13-15]; here we deal with the first deficiency of CEM. Tostbind, we propose a new block-circulant embedding
method (BCEM). Let us clarify the matter using the followithgee examples which come from sampling a random
permeability field in groundwater flow simulations.

Example 1.1. Triangular finite element with a quadrature point locatedtzd barycenter of the triangle.

Consider generation of a stationary log-normal random patitity field to be used in simulations based on triangular
finite elements and the Gaussian quadrature rule of degréhiba rectangular domain. Assume that the rectangular
domain consists of small rectangles (see Fig. 1) and thed theno overlap of these rectangles. To perform the finite
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FIG. 1. Left: Locations of nodes in 2D triangular elements. RightgRlar grid nodes (gray) which contain all the
original nodes (black). Note that the nodes on the right apdsides of the rectangles belong to the neighboring
elements.

element simulation, it is sufficient to have sampled valuethe permeability field at the quadrature points only
(see the black circles in Fig. 1). The covariance matrix efd¢brresponding stationary Gaussian random field at all
guadrature (black) points is symmetric block-Toeplitz, the blocks themselves are not symmetric. Hence, in order
for the standard CEM to be applicable, seven extra (i.gficgat from the point of view of sampling permeability
values sufficient for the finite element simulation) poiriteld be added to each rectangle (the gray circles in Fig. 1
are regular grid points involving black circles). In corstrto CEM, the new method—BCEM—allows one to sample
values at the required points (black circles) without addirtra nodes to the grid, and it does so in a very efficient
way, as we will see in the next sections.

Example 1.2. Cell-centered finite volume discretization in multilevedide Carlo (MLMC) computation.

The multilevel Monte Carlo (MLMC) method is a Monte Carlo eique that can give a substantial reduction of
computational complexity in comparison with the standamhié Carlo method thanks to making use of a hierarchical
sampling [16, 17]. In the MLMC algorithm, when computing ttiéference of quantities on two consecutive grids
with mesh sized and2h, the pair of fine and coarse random samples must come fromathe sealization of the
random field. In the cell-centered finite volume discret@atwhich uses permeability values at the centers of cells,
the locations of coarse random fields do not coincide withesazh the fine grid (see Fig. 2). In this case there exists
a uniform grid with the mesh sizk/2 containing both fine and coarse points, and hence it is pessitgenerate
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FIG. 2: Left: Location of sampling points on the fine grid (black) @esh and the coarse grid (hollow) of siz&
using the cell-centered finite volume discretization in Bight: Uniform grid (gray) which contains both black and
hollow points. Note that the nodes on the right and top sidéiseorectangles belong to the neighboring elements.
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the required pair from the same realization by applying CEMthus finer uniform grid (gray circles in Fig. 2).
However, this leads to an increase of both simulation tinteraemory requirements and, hence, to deterioration of
the MLMC performance. Table 1 compares the number of nodesheth the random field actually needed to be
sampled for MLMC (which will be the same as the number of nhagsedd in BCEM) against the ones on the fine,
regularized grid required by CEM. In the table denotes the total number of blocks used in MLMC. That is, in

L—1
the d-dimensional space, we hawe= n; 2d(i=1) 'wheren; is the number of blocks on the level 1 afds the

overall number of levels in MLMC. The p;orltion of unused vaggeows as dimension increases. The benefit of BCEM
is that by exploiting the block-regular structure of grided in MLMC, it allows us to sample at the points used in
finite volume simulation without the need to regularize thid fy adding extra points, which can result in substantial
savings of both computational time and memory in companigitimapplying CEM.

Example 1.3. Conditional random field generation on block-regular grids
The conditional random field generation based on CEM wasidered in [18]. In this approach one builds a sym-
metric matrix of the form

R— { Ry Rio ] ’ (1)

Ra1 Ra

where R;; € R™*™ js a (block) circulant matrix, ands> € R™2*"2 is a covariance matrix of field values at
locations of measurements. The matkcan be decomposed as

1 1
_FA1/2 0 _Al/QFH KH
R = /11 /11 5 (2)
K Loy 0 L%,

whereK = (1//n1)Ra1 FA~'/2 andLy, is areal matrix such thdtys L2, = Ros— K K. HereF denotes a discrete
Fourier transform matrix, and is a diagonal matrix whose entries are eigenvalueR,qef The computational costs
of forming A, K andK K areO(n; logn,) flops,O(nany logny) flops, andO(n3n,) flops, respectively. Note that
in practiceny < nj.

BCEM can also be used for generation of random fields comdtitioon observations. As with the unconditional
sampling discussed above, applications of conditionapsiagnoften deal with grids which are not regular but have a
regular block structure (see, e.g., conditional MLMC siatialn in [11]). Since BCEM requires a smalley value as
it does in the unconditional case, BCEM in the conditionabi@m field setting can outperform CEM.

BCEM also has the remarkable feature that it is parallelgab contrast to the standard CEM which is a serial
algorithm [of course, CEM can exploit parallelism of thetfasurier transform (FFT) but BCEM’s main ingredient is
also FFT and it can benefit from FFT parallelism as well], BEEEM has a further significant advantage over CEM.

The rest of the paper is organized as follows. In Section 2llwstiate the idea of BCEM in the case of one-
dimensional space. In Section 3 we present a multidimeasBGEM. Computational complexity of BCEM is dis-
cussed in Section 4, where some numerical experiments corgCEM with the standard CEM show that already
in 2D, BCEM can be 3 times faster in sample generation than CEM

TABLE 1. Comparison of the number of nodes
needed by BCEM and CEM in Example 1.2, where
n is the total number of blocks used in MLMC

Dimension | BCEM CEM | CEM/BCEM
1 2+ Dn an 1.3
2 224+ 1Dn | 42n 3.2
3 (25 +1)n | 4%n 7.1
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2. ILLUSTRATION OF THE IDEA

To illustrate the idea of BCEM, we start with presenting ithie 1D case.

Consider a uniform gri€,. = {xo, ...,z N} onthe interval) = [z, x| with a grid sizeh = (zy — 2¢)/N, and
sets of pointsS; = {sgﬂ, . .,sy)} C Q; = [z, m51] with sy) =x; +0j, where0 < §; <8z < --- <& < h(see
N-—1

Fig. 3). Note thab; are independent of the indéxThe grid(2, := J S, is, in general, nonuniform (it is uniform if

¢ = 1) but it is block uniform, i.e., the distribution of points @ach guobinterval (in other words, blodR) is the same.
LetZ(z), z € R, be a stationary Gaussian random field with zero mean andiaoea function-(x). Our aim

is to sample fron¥%(z) on the gridQ2,. If Q; is not a grid of equispaced points, then the covariance rmaftrthe

field Z(z) on Q; is not Toeplitz. In this case the standard CEM [8-10] canmoapplied to this covariance matrix

in order to perform highly efficient computing of its squaoetrwith subsequent generation of the required Gaussian

field samples. The simplest remedy is to extend the non-tmiépid 2, to the uniform gric2, by adding points (see

Fig. 3) and then apply the standard circulant embedding odetbut this approach results in a substantial increase

of computational costs. In this paper, we propose a diftempproach which does not need to add pointtcand

which is cheaper than the use of the standard CEM on the eedlamiiform grid(2,.

Consider the covariance matd¥of the random vectcE(sg.i)), sg-i) € g, written in the block matrix form:

Roo R Roo -+ Ron-1
Rig Ry Rip - Ry v
R= R Ry Roo  --- Ro N1 7 ©)
Ry-10 Bn-11 Bn-12 -+ BN-inN-1 | Noene

where each block matrik; j, is defined as

i k
Rix = {TGS;) B Sl( )M 1<4i<e “)
Now note that, by construction,
Ry, if j—i=1—k,
R”'_{RT if j—i=k—1 ©)
k.l ) —1= .

Property (5) implies that the covariance matkiXrom (3) can be uniquely determined by its first block row ardde
it is symmetric and block Toeplitz, having identical blo@ékeng diagonals. TheR can be rewritten as

Roy Ro 1 Roo -+ Ron-1
Ri Ropo Ron -+ Ron-2
R= Ri, R§ Roo -+ Ron-3 | (6)
joNfl R§N72 R§N73 e RO,O

We now illustrate how CEM [8—10] can be extended so that it version, BCEM, is applicable to the symmetric
block-Toeplitz matrixR from (6). To this end, we embefd in the m¢ x m¢ symmetric block-Toeplitz matriK’ for
some even integen > 2N:

8(10) séo) sgl) Sél) 852) 8;2) SgN—l) S(2N—1)
Zo §§0) T 551) T2 552) T3 IN-1 §§N_1) TN
FIG. 3: 1D uniform gridQ, = {xo,...,2ny} € Q = [zg,zy]. Black circles represent the locations of points

s§.i) € Q,, and the combination of black and gray circles corresponkeainiform gridQ,.
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C() Ol Omfl
Omfl C’O Om*Q
C= . ) (7)
1 sy Co
where
_ © _ (k)
G = rlolls” =7 m] ., ®)
and
T if © <mh/2,
9(z) = ! / (©)
mh—z if z>mh/2.

Note thatC; = Ry,; for 0 < ¢ < N — 1 and thatC is the covariance matrix fdf(x) defined in the circular manner

m—1
onthe gridQ? = |J S; c QF = |29, z,,,], wherex,,, = 2o + mh andS; are defined in the same way as before.
=0
Itis not difficult to see that the matri' has the following properties:

Co=CT, (10)
Cp=CT , for1<k< % (11)

The properties (10) and (11) imply th@tis a symmetric block-circulant matrix.
Let Fip be the tensor product of a one-dimensional discrete Fonmagrix F., of orderm and an identity matrix
I, of sizel x ¢:

I, I, I, e I,
wole w1l walp o Wil
FB — Frln ® IZ — w%lg w%lz w%lg v wzn—lll
(Ugnillg (1)71717115 (1)72717115 s wzjlz
The matrixC' is unitarily block diagonalizable b¥'s [10, 19], i.e., there existéx ¢ matricesAy, k =0,1,...,m—1,
such that
Ao O 0
1 0 Ay --- 0
C = —FgAFY, whereA=| . . | . . (12)
m . . . . :
0 0 - Ap_g

Here H denotes the conjugate transpose. Similarly to the eigaavddcomposition of a symmetric circulant matrix
whose eigenvalues can be calculated by performing a désEmtrier transform of its first row (or column), the block
matrices on the diagonal df can be computed as

[Co Ci-+-CpmoalFp=[Ao A1---Api], (13)

or in the component-wise form,

i’ ol

B = (A AV AL | where1 < j < (14)

Since the block circulant matriX is real and symmetrid\;, are Hermitian. Furthermore, all the diagonal elements
of A, are equal. Therefore, onf/ + 1)/2 — (¢ — 1) applications off’}, are required for computing.
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Remark 1. Consider a uniform grid, i.e., a block-regular grid with tk&e of a regular grid being a multiple of the
number of blocks or, in other words, the points in e&gtbeing uniformly located. Then BCEM is applicable on the
uniform grid (recall that CEM works on regular grids only)in8e the covariance depends on the distance between
points only, the block-circulant matriX' on the uniform grid satisfies the relationship

cob = ot if |a—b| = |c—d|.

Consequently), in (13) are Toeplitz and the number of 1D FET, to compute distinctive values dfis equal to

£. Thus, in BCEM the block-circulant matrix can be diagonadizy usingg FFTs of orderm followed by using a
Cholesky decomposition of the block-diagonal matrjxvhose block entries are of sizex £. For small¢, the overall
computational cost is dominated B)(¢m log, m). On the other hand, the complexity of CEM is dominated by FFTs
of orderm/, which gives the overall cos?(m/{ log, m¢). Hence, BCEM can outperform CEM on the uniform grid,
where both CEM and BCEM use the same covariance matrix (seedRemark 5).

The symmetricity of”' also guarantees the spectral decomposition
Ay = UpDRUE, (15)

whereUy, is unitary andDy, is a real-valued diagonal matrix. The following propositimplies thatA from (12) can
be decomposed wit/2 + 1 applications of the spectral decompositions (15).

Proposition 2.1. The block-diagonal matrid from (12) has the property

Ap =R,y for 1< k< 2, (16)

where the bar denotes the matrix with conjugate complexestr

Proof. Let w,, = exp((2wn/m)i) be a root of unity. Then [see (11) and (14)]

Amfk = CO + («Um—kcl + -+ wmfkmilcmfl
=Co+ wiCi+ -+ W 'Oy

It follows from (12) and (15) thaf” has the eigenvalue decomposition
1 H
C= E(FBU)D(FBU) , (17)

where the unitary block-diagonal matiixand the diagonal matri® are of the form

U 0 - 0 D, 0 - 0
0 Uy -+ 0 0 Dy -~ 0

U= . . and D = . . .
0 o0 Un-1 0 0 D1

We note that C is positive semidefinite if and onI;ij' >0foreach0 <k <m—1landl <i</.

Assume for the moment that all the eigenvalueg’adire non-negative. Let two independent random veders
andés, each of sizen, be normally distributedV' (O, 1,,,), i.e.,E[EZﬂJT] = 8;;1,», whered;; denotes the Kronecker
delta. Set) = U(D/m)'/?(&, +i&s). Then the real and imaginary parts of the veéter: Fzn give two independent
random vectorg; and(, that are both distributed d@§(0, C'). SinceR is embedded ir”, the corresponding parts of
¢1 and(, are distributed ad/ (O, R). Note that the matrix-vector multiplicatiofizn can be calculated component-
wise by/ applications ofF}, .
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The algorithm described above depends on positive semigeiass of the symmetric block-circulant matéix
The sufficient conditions for symmetric circulant matriceshave all non-negative eigenvalues were developed for
the 1D case in [9] and [8]. Here we extend these conditionsasymmetric block-circulant matrix from (27). To
this end, we introduce a uniform griel, such that), c Q, and consider the covariance matfxdefined or),. As

~ ~ - m—1
€, is a subset of),, R is a submatrix of the matri%. Let a uniform grid contain all points of2? = J ..
1=0

Then the symmetric block-circulant matiiXis a submatrix of a symmetric circulant mattix
O = [r(g(|Ji — a5))], (18)
where the functiog(z) is as in (9) and:;, z; € Qf Therefore there exists an injection matf¥ such that
C =PT'CP. (19)

An injection matrix can be built by eliminating rows of theeiatity matrix, which correspond to points not@f . For
instance,

1 0 0 0O
0 0100
0 00 01

is an injection matrix from{z1, 22, 3, x4, x5} t0 {21, z3, 25 }. The relationship (19) leads to the following proposi-
tion.

Proposition 2.2. If C is positive semidefinite, then sods

When the circulant matrig’ fails to be positive semidefinite, Wood and Chen [8] suggksiéncrease the size
of C until it becomes positive semidefinite (the so-called pagdéchnique). From the relationship (19) betwéen
andC, the same strategy can be used for the matfixThat is, increasen until C' becomes positive semidefinite.
Therefore the number of blocks which is required folC to be positive semidefinite depends on the grid size of the
uniform grid Qf not on the number of points 0. Thus the number of paddings needed for BCEM is the same as
for CEM (see also Remark 3).

3. MULTIDIMENSIONAL BCEM

In the previous section we illustrated the idea of BCEM indhmpler setting of 1D space. In this section we present
multidimensional BCEM, the computational complexity ofialinis discussed in the next section.

We start with introducing the notation which largely folls\d0]. LetZ? be the set ofl vectors with non-negative
integer components, arfidand1 be thed-dimensional vectors with all components equal to 0 andsheetively. For
i=([1],...,i[d)7,j= G[1],...,jd)T € Z?, we define addition irZ.¢:

i+ =[]+, ...id +jd)",
and also the product of elementsiof
d
i= il
k=1
For anyj € Z<, all components of which are strictly positive, we defineshbtZ(j):
I() ={iez?:0<i[k] <jk]—1foralll <k <d}. (20)

Note that the cardinality f(j) is equal tqj.
Introduce al-dimensional rectangular parallelepiped,
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d
Q = [Jlzolil, anli]] € RY, (21)

=1
whereN = (N[1],...,N[d])T € Z? and the vectoh with the componenth[i] = (zn|[i] — wo[i])/N[i]. Further,
pointsz;, = (@i, [1],..., 2, [d])T with 2;,[j] = 2o[j] + ix[j]h[j] form a regular grid?, = {x;,,. .., fCiNTlfl} on

the rectangular parallelepipétl (see Fig. 4). The domaift in (21) can be divided inta-dimensional rectangular
parallelepipeds as

Q= U Qjy., (22)
Jr€Z(N)
where .
ij = H[‘T.]k M? L [2] + h[Z]], Jk € I(N) (23)
i=1

For the purpose of algorithm development, we use a lexigdcardering ofj;, with respect tck, i.e., row after row
and layer after layer (see Fig. 4).

Consider a stationary Gaussian random fig{d), + € R¢, with zero mean and covariance functiofx). We
assume that the problem at hand is such that we need to s@fplat the nodesl(.j’“) defined as follows (see the
examples in the Introduction and also Fig. 4):

s = a5, + 65, (24)
wheres; = (§,[1],...,8;[d])T with 0 < §;[i] < hli] for 1 < i < d. Herel is the number of sampling points in each
subdomairf;, . That is, in eaclf?;, the points from the sef;j, = {ng"), NN sgj’“)} are distributed according to the

same pattern for ajl, € Z(N). Denote the grid

Q= U .

Jk€I(N)

Note thats; are independent of the index vecfar The covariance matriX of Z(sl(.j’“)), sl(-j’“) € (s, is block-
Toeplitz. In the one-dimensional case it consists of noeplitz blocks of ordef (see Section 2). In thé-dimensional
case withd > 1, it consists of blocks which all have the properties of a elation matrix in thel — 1 dimensional
space. We emphasize that the mafiixs not Toeplitz and hence CEM is not directly applicable here

Analogously to CEM, in order to build a block-circulant mafr we consider an extended domain

d
OF = T][zo[i], zm[i]], wherem = (ml[1],..., m[d])” with m[i] > 2NJi] andzy[i] = xo[i] + ml[i]h[i] for
i=1
1 <i < d. Figure 4 shows an example of the computation dorfaivith N = (4,4)” and the extended domatit¥
with m = (8,8)7. Vectorsj, € Z(m + 1) form the extended regular grid”® = {z;, = (z;,[1],..., 25, [d])T |
jx € Z(m + 1)} C QF. There arem + 1 regular grid points in the sé2Z. The parallelepipe2” can be divided
into d-dimensional small parallelepipeds as (see also Fig. 4)

0= |J @, (25)
Jk€Z(m)

whereQ;, , jx € Z(m), are as in (23).
We now describe BCEM in thé-dimensional case, which is applicable to our block-Tdemlovariance matrix
R. In contrast to the 1D setting, where the covariance funddalways even because of its symmetry, further clas-
sification of covariance functions is needed in higher dish@mal cases. We say thats component-wise even the
ith coordinate if
r(z[1],...,—z[i],...,z[d]) =r(z1],...,z[]...,z[d]) (26)

for all z € R%; otherwise, we say thatis uneven component-wigesome coordinates.
For simplicity of the exposition, let us assume for now th@at) is component-wise, even in all coordinates. We
discuss a modification of BCEM in the uneven case in Remark 2.
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FIG. 4: The 2D uniform grid2f = {zj, = 2o, %j,,...,%j; , = Tm} ON the rectangl®” = [zo[1], zm[1]] x

[z0[2], zm[2]] for m = (8,8)7. Node33§j’“) of the block-regular grid2? are represented by black circles. The
shaded rectangle corresponds to the computation (i.eddimain of interest for the problem at hand) dom@in=
[zo[1], xn[1]] X [w0[2], 2N [2]] for N = (4, 4)T.
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We first build the block-circulant embedding of the blockeptitz matrix R. Consider the block-circulant matrix
C of the form

C = [Cjajb]0§a7b§m—l ’ (27)
where the(i, j)th element of a block’;,;, is equal to
ij o (a) _ (G»)
G = 1(gm (s = 57")), (28)

and the vector functiogy, (z) = (gi,(7),..., ¢k (x)T, z € {x € R? : 0 < |z[i]] < m[i]h[i],i = 1,...,d} is
defined by
| 2[i], if [2[i]| < m[i]hli]/2,
gi(z) = { zli] — m[ih[i], if mli]h[i]/2 < z[i] < m[i]hli], (29)
zi] + mih[i], i mfi]h[i]/2 < —«[i] < m[i]h]i].

The first block row of the block-circulant matrix C is &x ¢m matrix C'y of the form
Cr=1[Ciio Ciosr ~* Ciojmr |- (30)
Also, note that the covariance matiikcan be expressed via block$, ;, as
R = [Ciujo)ieivezny: (31)

The block-circulant matrixC' is block diagonalizable by a block discrete Fourier transf@BDFT) matrix,
Fp = F& ® I,, where F¢ is ad-dimensional DFT matrix. That is, we have = (1/m)FgAFf, whereA =
diag(Ao, ..., Am). The blocks on the diagonal ¢f can be found by simply taking BDFT of the first block row
[10, 19]. Furthermore, using the fact thag is the tensor product involving the identity matrix, we aerihe follow-
ing component-wise computation:

[Ag7 - ARl ] = FRTL((C], - Gy

Jodo jojﬁ—l])’

(32)

wherel < 4,5 < ¢ and FFT; is thed-dimensional FFT. Note that instead of FRTie will write FFT.

Due to the fact that\ is Hermitian and all diagonal entries &f, are the same, the required number of gt
sizem (which is equivalent to FFT of ord&n) in (32) is¢(¢ +1)/2 — (£ — 1).

If A is positive-definite, the Cholesky decompositibr= LL exists, wherd. is a block-diagonal matrix, with
each block being a lower triangular matrix. Then we obtaéndbcompositiod” = (1/m)FpL(FpL).

As in the one-dimensional case (see Section 2J, let&, + i&; be a complex-valued random vector of ordier
with & andé; being real, normal random vectors such thg;] = 0 andE[£;£!] = 5,;1. SetL = (1/m)'/L and

n = L&, Multiplying the square root of’ by &, we obtain the complex-valued vector
Fpn= (= (1 + i, (33)

with the propertie®[(; (7] = E[(2¢]] = C, and{; and(; are independent. Using tensor-product propertieSnf
¢ can be computed in the component-wise manner:

[Cls] Cli+4)...Cli+ (m—1)¢ =FFTy(Infz] mlt+4€...n[i+ (m—1)4) (34)

forl1 <: </,
To summarize, the new BCEM can be presented in algorithmnio s follows:
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Algorithm 1: Block-circulant embedding method (BCEM)

GivenN € Z%, 2o € , and strictly positive valued vectdr ¢ R,

Step 1Choose a vectan € Z? such thatm[i] > 2N[i] forall 1 <i < d.

Step 2 Compute the first block row of the circulant mattixas described in (27)—(30).

Step 3 Compute the block-diagonal matix= diag(Ao, - - - , Am—1) using (32).

Step 4 Compute the square root &fapplying Cholesky decompositions to diagonal blocka of

A=LLH, (35)

whereL is a block-diagonal matrix with lower triangular block ofdar .

Step 51f the Cholesky decomposition fails Btep 4 increasam|i] by one or more and go tBtep 2

Step 6 Computel, = (1/m)'/2L.

Step 7 Generate a random complex vector of dimensioh £ = &; + i€y, with two independent vectoks
and&; beingN (0, I¢). Computen = LE.

Step 8 Computez = (([1], ..., ¢[m¢])T by applying FFT; £ times as in (34).

This algorithm works for all lengthsn[i], 1 < ¢ < d, even and odd, when the covariance functidn) is
component-wise even in all coordinates. But, for efficiepayposes, it is preferable to choasein Step 1 so that
each of its components is a power of 2 as the algorithm rehdsH.

Note thatif¢ = 1, then(2,. is regular('is circular,A becomes diagonal, instead of block diagonal, and Algorithm
degenerates to the standard CEM.

Remark 2. Algorithm 1 is applicable when the covariance function impmnent-wise even [see (26)]. Although the
covariance function is even by definition, i»s-2) = r(z), it could be component-wise uneven, e.g.,

2

r(zx) :exp(—:cTA:c) with A= { _1

_21 ] , x€R?
is uneven. In this case, the matixdefined by the vector functigp, in (29) usually does not have block-circulant
structure because of conflicting definitions at the pointgith «[¢{] = m[i]h[i]/2, if » is uneven in théth coordinate.
Two adjustments to make the CEM work in uneven cases werestadgn [8], which can be applied to BCEM by
modifying Algorithm 1 as follows:

If r is uneven in théth coordinate, either

(a) choosan][i] to be an odd integer, e.g., a power of three;
or

(b) still choosem|i] to be an even integer and defigg, using (28) and (29), except pufz) = 0 for all z such
that |z[¢]| = m[i]h[:]/2 for somei.

In either case, the resulting matrix has a block-circulant structure, and thus Algorithm 1 carsbamlessly extended
to the uneven case with the aforementioned modifications.

Remark 3. As mentioned earlier, the matriX is often negative definite in practical applications of CEMUIZBCEM.
Following [8], we increase the matrix’ in Algorithm 1 (see its Step 5) until it becomes positive defimite (the
padding technique). The padding technique is universalemully efficient when the correlation length of a random
field is in a range from small to medium relative to the size obmputational domain and the field is not too smooth.
Otherwise, the use of the padding technique could be vemnsxee. There are two recently developed alternatives
to padding (a cutoff of the circulant matrix [13, 14] and sntlsiog window circulant embedding [15]), which can
deal with the problem of negative definiteness of circulaatrites effectively. The techniques from [13-15] are as
applicable to BCEM as they are for CEM.
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The equispaced FFT is highly parallelizable in high dimensj and its highly scalable implementations are
proposed in [20, 21]. This could be beneficial in the standzaiEd because its computation is dominated by the
FFT. Still equipped with the parallelism of the FFT, BCEM damfurther parallelized in a natural way because the
applications of FF} in Step 3 and Step 8 of Algorithm 1 can be performed separatelysimultaneously. Moreover,
block-diagonal matrix operations in Step 4 and Step 7 carebfepned separately and simultaneously. Therefore, the
overall BCEM algorithm contains two-level parallelismyigig us a significant advantage over the standard CEM.

As we see in the next section, BCEM can be faster than CEM, indtiking square roots of the corresponding
circulant matrices (performed, of course, only once pewthele Monte Carlo simulation) and in sampling the random
field required in each Monte Carlo run. The latter is usualyrenmportant in Monte Carlo-type simulations.

4. COMPUTATIONAL COMPLEXITY OF BCEM

In this section we analyze the computational complexity 6HBA. To this end, we use the same convention as in
Golub and Van Loan [22] for counting the number of floatingmtaiperationsbm log, m flops for FFT of sizen
andn?/3 flops for the Cholesky decomposition of a matrix of order

Step 3 of Algorithm 1 is the initial factorization of the blocirculant matrixC' by taking BDFT of its first block
row, which can be computed using the ordinary DFT in (32) atdibst

cosi = (E(ZS— D _ (£— 1)) (5m log, m) flops (36)
Here we took into account that eadh is Hermitian and its diagonal elements have the same value.

In Step 4, the square root operation on the block-diagontixna with m blocks of order can be performed on
each block separately using the Cholesky decompositiohadein Proposition 2.1, we proved in the one-dimensional
case that\ has pairs of complex conjugate blocKs, andA,,,_x, which allows us to compute the square root\qf
and use its complex conjugate as a square root of its complgugate pair\,,, . This is based on the periodicity
and conjugate symmetry of FFT. Hence, Proposition 2.1 caextended to the higher-dimensional cases. Then the
matrix A can be decomposed at the cost

cost = ﬁ (m—m + 1) ﬁ flops (37)
N 2 3
i=1

Remark 4. Note that if the nodes of;, are regularly (uniformly) distributed if2;, for all j, € I(m), which

is often the case in applications (see, e.g., Example 1h&) all blocks on the diagonal of are block Toeplitz
(Toeplitz). Toeplitz matrix and block-Toeplitz matrix da@ decomposed using Schur’s algorithm [23] and block
Schur’s algorithm [24], respectively, which haég¢?) complexity as opposed 0(¢3) for the standard Cholesky
decomposition. Making use of Schur’s algorithms can rede&ost of Algorithm 1.

In Step 1, computing a realization ofequires block-diagonal matrix-vector multiplicati@& and/ applications
of FFT of orderm in (34) at the cost
cost = ¢*m flops (38)

and
cost, = ¢(5m log, m) flops (39)

respectively.

To conclude, the cost of BCEM 8 (¢*m + /*mlog, m) flops. In practical applications of BCEM (see examples
in the Introduction) the size of blocKss relatively small while the number of blocks is large. Recall that BCEM is
designed for block-regular grid3;. Its main computational advantage in comparison with CEMi¢Ww is designed
for regular grids) comes from the fact that the use of CEM im ¢hse of simulations on a block-regular gfid
requires regularization d, i.e., adding a significant number of extra nodes which BCEMsnot need. Hence
BCEM works on a grid with a smaller number of nodes than CEMaeells to generate random vectof smaller
size than CEM (and hence makes fewer calls to a random nureberator to samplg).
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Remark 5. It can be shown that the use of BCEM on a regular grid split iockk of siz¢ can be more effective in
sampling the random field than CEM but it is computationalbyerexpensive in the matrix decomposition than CEM.
The latter can be overcome by exploiting the fact that BCEpaisillelizable in comparison with CEM. Thus BCEM
can be more effective than CEM, even in the case of reguldsdar which CEM is designed.

We now compare computational the complexity of BCEM and CHEing the three examples from the Introduc-
tion and the following exponential covariance function [&8)]:

2 (2
= - 40
00 = o%exp (1301, (40)
where|| - |1 meand.; norm. We note that the circulant matiix[cf. (30), (28)] of the sizan = 2N formed by (40)

is always positive definite (see, e.g., [9]). This means.artipular, that Step 1 (i.e., padding) of Algorithm 1 is not
needed in this case. For simplicity, we consider the dofaim be the unit square in the examples.

Example 4.1. Triangular finite element with a quadrature point locatedtzd barycenter of the triangle.

In Example 1.1 (see Fig. 1), each rectangular block contamesuniform grid nodes. Hence the order of the circulant
matrix used by CEM i®m, wherem = 2NN andm is the number of rectangular blocks in the extended dof&in
Then the matrix decomposition cost for CEMiism log, 9m flops, and generation of each realization of the random
field requires anothetbm log, 9m flops.

Here BCEM uses only two points in each rectangular block heoarder of the block-circulant matrix &m.
Substituting¢ = 2 into (36) and (37), the total matrix decomposition cost f@BBM is 10m log, m + (m[1]/2 +
1)(m[2]/2 + 1)(8/3) flops. Each realization of the random field is generated attiseof4m + 10m log, m flops
[see (38) and (39)].

Figure 5 shows the floating point operations required by wWee dlgorithms. One can see that BCEM is more
effective in both procedures and that the complexity of BC@ilws at roughly the same rate as for CEM. Compared
to CEM, BCEM reduces the matrix decomposition cost and theegdion cost approximately a5 times and4
times, respectively. The improvementin computationatefficy is due to the fact that BCEM works with just 2/9 of
nodes that CEM uses to build the circulant matrix. This aleans that BCEM requires 4.5 times less memory than
CEM.

Decomposition Generation

38 38

—%— CEM ) 36, | —— CEM 4
36r | —— BCEM 1 — -~ —BCEM

34l Slope 2.1

32¢

30¢

28t

Iogz(ﬂops)
Iogz(ﬂops)

261

24;

.\

22f

6 7 8 9 10 11 12 206 7 8 9 10 1 12
log2(N[1]) = loga(N[2]) loga(N[1]) = loga(N[2])

FIG. 5: The floating point operations required for the matrix decosifion and random field generation stages of

CEM and BCEM in Example 4.1.
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To compare the performance of BCEM and CEM further, we ge¢adrsamples of the random field by these
two methods on an Intel Xeon E5-2450, 96GB RAM computer uM#d LAB R2014a. Figure 6 shows the average
computational time of generation of a single realizatiothefrandom field by both methods and how it increases with
increasingN. Table 2 gives the CPU time and the speedup in generatingdamaxector using BCEM against those
using CEM. For both methods, the CPU time increases witheasz ofN at about the same rate as the theoretical rate
shown in Fig. 5 (right). We see that BCEM is about 4.3—4.5 sifaster than CEM, which is close to the theoretical
cost estimation in Fig. 5.

Example 4.2. Cell-centered finite volume discretization in multilevedide Carlo (MLMC) computation.

In Example 1.2, BCEM uses 5 out of 16 of the uniform nodes meglior CEM in each individual block to generate
random variables located at the centers of both the fine aatseaells. That is, CEM should generate random
variables at the extra 11 nodes that are not used in the fioltene discretization and are not used by BCEM. Then
memory requirement for CEM and BCEM i$m and5m, respectively, which makes BCEM more attractive when
the number of blocks is large.

Whereas the matrix decomposition and sampling costs in CEf kequireS80m log, 16m flops, the computa-
tional costs of the matrix decomposition and sampling in BCEe55m log, M+ (m[1]/2+1)(m[2]/2+1)(125/3)
flops and25m + 25mlog, m flops, respectively [see (36)—(39) with= 5]. Note that the total costs are domi-
nated bym log, m. Hence, for largem, the ratio of the matrix decomposition in CEM to one in BCEMisse to

Single Simulation Time

—*— CEM
- + —BCEM
Slope 2.1

log, (CPU time) (s)

6 % 8

10g2(N[1]) = loga(N[2])

FIG. 6: Average time required to simulate a single realization eftdndom field in Example 4.1 computed using
1000 independent samples.

TABLE 2: Average time required to

simulate a single realization of the ran-
dom field in Example 4.1 computed us-
ing 1000 independent samples

CPU Time(s)

N | BCEM  CEM | Speedup

32 0.60 2.71 4.5

64 232  11.39 4.9

128 | 11.34  48.55 4.3

256 | 49.37 212.21 4.3
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80/55 ~ 1.45. For the sample generation cost, the ratio is clos&0i25 ~ 3.2. These theoretical computational
costs are shown in Fig. 7.

Figure 8 gives the CPU times for the random field generatians®é¢ that the actual computational cost increases
with increase ofN, similarly to the theoretical one as in Fig. 7. Table 3 dem@tes that BCEM is nearly 3 times
faster than CEM as we expected from Table 1 and Fig. 7. Alse tiwit BCEM is highly parallelizable, so the
computation cost can be further reduced using parallelilgos.

Example 4.3. Conditional random field generation on block-regular grids

Consider the conditional random field generation based o @Eoduced earlier in Example 1.3. For our experi-
ments, we use the same block-regular grid as in Example d.¢teose synthetic 10 observation data. The coordinates
of 10 points and observed values are provided in Table 4.

Decomposition Generation
. . . 32 . .

32

—x— CEM
- -~ —BCEM
Slope 2.2

307

28+

26+

24}

Iogz(ﬂops)
Iogz(ﬂops)

22r

20t

4 5 6 78 9 3 4 5 6 78 9
log2(NI1) = logz (N[2)) log2(N[1)) = log (N[2))

FIG. 7: The floating point operations required for the matrix decosifion and random field generation stages of
CEM and BCEM in Example 4.2.

Single Simulation Time
10 . :

—%— CEM
- + —BCEM
Slope 2.2 *

log,(CPU time) (s)

5 6 7 8

loga(N[1]) = loga(N[2])
FIG. 8: Average time required to simulate a single realization efitindom field in Example 4.2 computed using
1000 independent samples.
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TABLE 3: Average time required to
simulate a single realization of the ran-
dom field in Example 4.2 computed us-
ing 1000 independent samples

CPU time (s)
N CEM BCEM || Speedup
32 0.94 3.08 3.3
64 4.62 13.71 3.0
128 | 23.37 68.28 2.9
256 | 101.82 301.24 3.0

TABLE 4: Cartesian coordinates of 10 points in the domain
Q = [0, 1]? and synthetic observation values,

x[1] x[2] z x[1] x[2] z
0.2512| 0.7264| 0.6746| 0.1400| 0.1922| 1.2083
0.5363| 0.2909| 4.7737| 0.2682| 0.6228| 1.2606
0.7349| 0.5463| 2.2704 || 0.4017| 0.1244| -3.2401
0.3480| 0.9252| 0.6082| 0.4705| 0.2330| —2.3023
0.5128| 0.2914| 5.1420| 0.9608| 0.4613| —1.0330

Recall that decomposition of the matrdXin (1) is computationally dominated by the cost of formiRgin (2),
which requiresO(nqn; logny) flops, wheren, is the size of a (block) circulant matrix and is the number of
observations. Note that, < n; andny = 10 in this example.

In order to compare efficiency, we measured the CPU timese@orels) obtained by forming the matricks
using the two algorithms. One can see from Fig. 9 and TablaBBEEM achieves a speedup factor of 6 over CEM
in forming the matriceg(. We also note that BCEM requires 4.5 times less memory thavl.CE

Forming K
4 T T T T g T

—+ BCEM

@
£
52
[a W
<
o
Lo
-4
k -
+
P 7
6} P -
7
e
e
e
-8 1 1 1 1 1 1 1
5 55 6 7.5 8 8.5 9

6.5 7
log,N[1] =log,N[2]
FIG. 9: CPU times for forming the matrix.
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TABLE 5: CPU time Average time re-

quired to simulate a single realization of
the random field in Example 4.2 com-
puted using 1000 independent samples

CPU time (s)

N CEM BCEM | Speedup

32 0.0338 0.0043 7.9

64 0.1500 0.0247 6.0

128 | 0.5710 0.110Q 51

256 | 2.6700 0.4180 6.3

512 | 11.6000 1.8700 6.2

We have compared BCEM and CEM on the 2D examples here. It idiffimult to see (cf. Table 1) that in 3D
cases BCEM can outperform CEM even more dramatically.

Remark 6. The MATLAB codes for BCEM used for Examples 4.1-4.3 areablaikt https://github.com/parkmh/
bcempaper.

ACKNOWLEDEGMENT
This work was partially supported by the EPSRC through GrmtEP/K031430/1.

REFERENCES
1. Delhomme, J. P., Spatial variability and uncertaintyriougndwater flow parameters: A geostatistical approsiéter Resour.
Res, 15(2):269-280, 1979.

2. Gel, Y., Raftery, A. E., Gneiting, T., Tebaldi, C., NychKa., Briggs, W., Roulston, M. S., and Berrocal, V. J., Caliled
probabilistic mesoscale weather field forecasting: Thesgistical output perturbation methad, Am. Stat. Assac99:575—
590, 2004.

3. Marheineke, N. and Wegner, R., Fiber dynamics in turbullenvs: General modeling frameworlSIAM J. Appl. Math.
66:1703-1726, 2006.

4. Skordos, A. A. and Sutcliffe, M. P. F., Stochastic simiolabf woven composites formin@ompos. Sci. Technp68:283-296,
2008.

5. Zhang, F., Cosson, B., Comas-Cardona, S., and Binettyffitient stochastic simulation approach for RTM procegth
random fibrous permeabilitompos. Sci. Technolf1:1478-1485, 2010.

6. Ghanem, R. G. and Spanos, P. 8tgchastic Finite Elements: A Spectral Approa8pringer, New York, 1991.

7. Le Maitre, O. and Knio, O.Spectral Methods for Uncertainty Quantification with Applions to Computational Fluid
Dynamics Springer, New York, 2010.

8. Wood, A. T. A. and Chan, G., Simulation of stationary Garsgrocesses if0, l]d, J. Comput. Graph. Stat3:409-432,
1994.

9. Dietrich, C. R. and Newsam, G. N., Fast and exact simulaifcstationary gaussian processes through circulant ediriged
of the covariance matrix§IAM J. Sci. Compyt18:1088-1107, 1997.

10. Chan, G. and Wood, A. T. A., Simulation of stationary Gaaus vector fieldsStat. Comput.9(4):265—-268, 1999.

11. Park, M. and Cliffe, K. A., Conditional multilevel Mon@arlo simulation of groundwater flow in the Culebra Dolonzitehe
Waste Isolation Pilot Plant (WIPP) site, arXiv:1402.5280@14.

12. Verleye, B., Nuyens, D., Walbran, A., and Gan, M., Uraiety quantification in liquid composite moulding processa
Proc. of FPCM11 Conf.Auckland, Australia, pp. 265-271, July, 2012.

13. Stein, M., Fast and exact simulation of fractional Bramrsurfaces). Comput. Graph. Stat11:587-599, 2002.

Volume 5, Number 6, 2015



14.

15.

16.

17.

18.

19.
20.

21.

22.
23.
24.

Park & Tretyakov

Gneiting, T.Sevéikova, H., Percival, D. B., Schlather, M., and JianigFast and exact simulation of large Gaussian lattice
systems irR?: Exploring the limits J. Comput. Graph. Stat15:1-19, 2006.

Helgason, H., Pipiras, V., and Abry, P., Smoothing wimsidor the synthesis of Gaussian stationary random fieldsgusi
circulant matrix embeddingl. Comput. Graph. Stat23:616-635, 2014.

Cliffe, K. A., Giles, M. B., Scheichl, R., and Teckentrup L., Multilevel Monte Carlo methods and applications thpgic
PDEs,Comput. Visual. Sci14:3-15, 2011.

Barth, A., Schwab, C., and Zollinger, N., Multi-level kte Carlo finite element method for elliptic PDEs with stostia
coefficientsNumer. Math.119:123-161, 2011.

Dietrich, C. R. and Newsam, G. N., A fast and exact methodiultidimensional Gaussian stochastic simulationsefsion
to realizations conditioned on direct and indirect measeres,Water Resour. Res32(6):1643-1652, 1996.

Davis, P. J.Circulant Matrices 2nd ed., AMS Chelsea Publishing, Providence, RI, 1979.

Frigo, M. and Johnson, S. G., FFTW: An adaptive softwarhitecture for the FFT, iroc. of IEEE Int. Conf. on Acoustics
Vol. 3 of Speech and Signal Processing (ICASSP), pp. 13834;1398.

Eleftheriou, M., Fitch, B., Rayshubskiy, A., Ward, ThdaGermain, R., Performance measurements of the 3D FFT ddluke
Gene/L supercomputer, Euro-Par 2005 Parallel Processing: 11th Int. Euro-Par Corfisbon, Portugal, Aug. 30-Sept. 2,
2005, J. Cunha and P. Medeiros (Eds.), Vol. 3648, Lecturediot Computer Science, Springer-Verlag, Berlin, pp. 793;-8
2005.

Golub, G. H. and van Loan, C. Matrix Computations3rd ed., John Hopkins University Press, Baltimore, MD,6.99
Stewart, M., Cholesky factorization of semidefinite dide matricesLinear Algebra Appl 254:497-525, 1997.

Gallivan, K. A. and Thirumalai, S., High performanceaalthm for Toeplitz and block Toeplitz matricekinear Algebra
Appl, 241-243:343-388, 1996.

International Journal for Uncertainty Quantification



