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We propose a new method for sampling from a stationary Gaussian random field on a grid which is not regular but

has a regular block structure, which is often the case in applications. The introduced block-circulant embedding method

(BCEM) can outperform the classical circulant embedding method (CEM), which requires a regularization of the irreg-

ular grid before its application. Comparison of BCEM vs CEM is performed on typical model problems.
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1. INTRODUCTION

Uncertainties are often modeled using stationary Gaussianfields [1–5]. Efficient generation of samples from stationary
Gaussian fields is crucial for using Monte Carlo techniques,which are the backbone of uncertainty quantification
simulations, in studying the behavior of systems subject touncertainties. There are a few numerical techniques for
sampling Gaussian random fields on a grid. For instance, one can find a square root of the corresponding covariance
matrix using Cholesky’s decomposition and then multiplying the square root by a vector of independent Gaussian
random variables to simulate a sample. This is an exact method, but it is rarely used in applications due to the high cost
of Cholesky’s decomposition in high dimensions. Another possibility is the Karhunen-Loeve expansion (see, e.g., [6,
7]), which requires knowledge of eigenvalues and eigenfunctions of the covariance operator for the Gaussian random
field. In many cases of practical interest the eigenvalue problem has to be solved numerically, which can be expensive,
especially when eigenvalues decay slowly. Also, this method is not exact. The fast and exact method of generating
large samples from stationary Gaussian fields on regular grids is the circulant embedding method (CEM) [8–10],
which is widely used in various uncertainty quantification (UQ) applications such as groundwater flow simulation
[6, 11], weather field forecasting [2], and liquid compositemolding processes [12]. The two main drawbacks of CEM
are (i) the requirement imposed on the grid to be regular while irregular grids of a block structure naturally appear
in many applications (see three typical examples below) and(ii) the need to deal with nonpositive definiteness of
circular embedding matrices, which often occur in practical applications. The remedies for the latter were considered
in [13–15]; here we deal with the first deficiency of CEM. To this end, we propose a new block-circulant embedding
method (BCEM). Let us clarify the matter using the followingthree examples which come from sampling a random
permeability field in groundwater flow simulations.

Example 1.1. Triangular finite element with a quadrature point located atthe barycenter of the triangle.
Consider generation of a stationary log-normal random permeability field to be used in simulations based on triangular
finite elements and the Gaussian quadrature rule of degree 1 within a rectangular domain. Assume that the rectangular
domain consists of small rectangles (see Fig. 1) and that there is no overlap of these rectangles. To perform the finite
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FIG. 1: Left: Locations of nodes in 2D triangular elements. Right: Regular grid nodes (gray) which contain all the
original nodes (black). Note that the nodes on the right and top sides of the rectangles belong to the neighboring
elements.

element simulation, it is sufficient to have sampled values of the permeability field at the quadrature points only
(see the black circles in Fig. 1). The covariance matrix of the corresponding stationary Gaussian random field at all
quadrature (black) points is symmetric block-Toeplitz, but the blocks themselves are not symmetric. Hence, in order
for the standard CEM to be applicable, seven extra (i.e., artificial from the point of view of sampling permeability
values sufficient for the finite element simulation) points should be added to each rectangle (the gray circles in Fig. 1
are regular grid points involving black circles). In contrast to CEM, the new method—BCEM—allows one to sample
values at the required points (black circles) without adding extra nodes to the grid, and it does so in a very efficient
way, as we will see in the next sections.

Example 1.2. Cell-centered finite volume discretization in multilevel Monte Carlo (MLMC) computation.
The multilevel Monte Carlo (MLMC) method is a Monte Carlo technique that can give a substantial reduction of
computational complexity in comparison with the standard Monte Carlo method thanks to making use of a hierarchical
sampling [16, 17]. In the MLMC algorithm, when computing thedifference of quantities on two consecutive grids
with mesh sizesh and2h, the pair of fine and coarse random samples must come from the same realization of the
random field. In the cell-centered finite volume discretization, which uses permeability values at the centers of cells,
the locations of coarse random fields do not coincide with nodes on the fine grid (see Fig. 2). In this case there exists
a uniform grid with the mesh sizeh/2 containing both fine and coarse points, and hence it is possible to generate

h
2h

h/2

FIG. 2: Left: Location of sampling points on the fine grid (black) of size h and the coarse grid (hollow) of size2h
using the cell-centered finite volume discretization in 2D.Right: Uniform grid (gray) which contains both black and
hollow points. Note that the nodes on the right and top sides of the rectangles belong to the neighboring elements.
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the required pair from the same realization by applying CEM on this finer uniform grid (gray circles in Fig. 2).
However, this leads to an increase of both simulation time and memory requirements and, hence, to deterioration of
the MLMC performance. Table 1 compares the number of nodes atwhich the random field actually needed to be
sampled for MLMC (which will be the same as the number of nodesused in BCEM) against the ones on the fine,
regularized grid required by CEM. In the table,n denotes the total number of blocks used in MLMC. That is, in

thed-dimensional space, we haven = n1

L−1∑
i=1

2d(i−1), wheren1 is the number of blocks on the level 1 andL is the

overall number of levels in MLMC. The portion of unused values grows as dimension increases. The benefit of BCEM
is that by exploiting the block-regular structure of grids used in MLMC, it allows us to sample at the points used in
finite volume simulation without the need to regularize the grid by adding extra points, which can result in substantial
savings of both computational time and memory in comparisonwith applying CEM.

Example 1.3. Conditional random field generation on block-regular grids.
The conditional random field generation based on CEM was considered in [18]. In this approach one builds a sym-
metric matrix of the form

R =

[
R11 R12

R21 R22

]
, (1)

whereR11 ∈ R
n1×n1 is a (block) circulant matrix, andR22 ∈ R

n2×n2 is a covariance matrix of field values at
locations of measurements. The matrixR can be decomposed as

R =




1√
n1

FΛ1/2 0

K L22








1√
n1

Λ1/2FH KH

0 LT
22



 , (2)

whereK = (1/
√
n1)R21FΛ−1/2 andL22 is a real matrix such thatL22L

T
22 = R22−KKH. HereF denotes a discrete

Fourier transform matrix, andΛ is a diagonal matrix whose entries are eigenvalues ofR11. The computational costs
of formingΛ,K andKKH areO(n1 logn1) flops,O(n2n1 logn1) flops, andO(n2

2n1) flops, respectively. Note that
in practicen2 ≪ n1.

BCEM can also be used for generation of random fields conditioned on observations. As with the unconditional
sampling discussed above, applications of conditional sampling often deal with grids which are not regular but have a
regular block structure (see, e.g., conditional MLMC simulation in [11]). Since BCEM requires a smallern1 value as
it does in the unconditional case, BCEM in the conditional random field setting can outperform CEM.

BCEM also has the remarkable feature that it is parallelizable, in contrast to the standard CEM which is a serial
algorithm [of course, CEM can exploit parallelism of the fast Fourier transform (FFT) but BCEM’s main ingredient is
also FFT and it can benefit from FFT parallelism as well], i.e., BCEM has a further significant advantage over CEM.

The rest of the paper is organized as follows. In Section 2 we illustrate the idea of BCEM in the case of one-
dimensional space. In Section 3 we present a multidimensional BCEM. Computational complexity of BCEM is dis-
cussed in Section 4, where some numerical experiments comparing BCEM with the standard CEM show that already
in 2D, BCEM can be 3 times faster in sample generation than CEM.

TABLE 1: Comparison of the number of nodes
needed by BCEM and CEM in Example 1.2, where
n is the total number of blocks used in MLMC

Dimension BCEM CEM CEM/BCEM
1 (2 + 1)n 4n 1.3

2 (22 + 1)n 42n 3.2

3 (23 + 1)n 43n 7.1
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2. ILLUSTRATION OF THE IDEA

To illustrate the idea of BCEM, we start with presenting it inthe 1D case.
Consider a uniform gridΩr = {x0, . . . , xN} on the intervalΩ = [x0, xN ] with a grid sizeh = (xN −x0)/N , and

sets of pointsSi = {s(i)1 , . . . , s
(i)
ℓ } ⊂ Ωi = [xi, xi+1] with s

(i)
j = xi + δj , where0 ≤ δ1 < δ2 < · · · < δℓ < h (see

Fig. 3). Note thatδj are independent of the indexi. The gridΩs :=
N−1⋃
i=0

Si is, in general, nonuniform (it is uniform if

ℓ = 1) but it is block uniform, i.e., the distribution of points ineach subinterval (in other words, block)Ωi is the same.
Let Z(x), x ∈ R, be a stationary Gaussian random field with zero mean and covariance functionr(x). Our aim

is to sample fromZ(x) on the gridΩs. If Ωs is not a grid of equispaced points, then the covariance matrix of the
field Z(x) on Ωs is not Toeplitz. In this case the standard CEM [8–10] cannot be applied to this covariance matrix
in order to perform highly efficient computing of its square root with subsequent generation of the required Gaussian
field samples. The simplest remedy is to extend the non-uniform gridΩs to the uniform gridΩ̃s by adding points (see
Fig. 3) and then apply the standard circulant embedding method, but this approach results in a substantial increase
of computational costs. In this paper, we propose a different approach which does not need to add points toΩs and
which is cheaper than the use of the standard CEM on the extended uniform gridΩ̃s.

Consider the covariance matrixR of the random vectorZ(s(i)j ), s(i)j ∈ Ωs, written in the block matrix form:

R =




R0,0 R0,1 R0,2 · · · R0,N−1

R1,0 R1,1 R1,2 · · · R1,N−1

R2,0 R2,1 R2,2 · · · R2,N−1

...
...

...
. . .

...
RN−1,0 RN−1,1 RN−1,2 · · · RN−1,N−1




Nℓ×Nℓ

, (3)

where each block matrixRi,k is defined as

Ri,k =
[
r(|s(i)j − s

(k)
l |)

]

1≤j,l≤ℓ
. (4)

Now note that, by construction,

Ri,j =

{
Rk,l if j − i = l − k,

RT
k,l if j − i = k − l.

(5)

Property (5) implies that the covariance matrixR from (3) can be uniquely determined by its first block row and hence
it is symmetric and block Toeplitz, having identical blocksalong diagonals. ThenR can be rewritten as

R =




R0,0 R0,1 R0,2 · · · R0,N−1

RT
0,1 R0,0 R0,1 · · · R0,N−2

RT
0,2 RT

0,1 R0,0 · · · R0,N−3

...
...

...
. . .

...
RT

0,N−1 RT
0,N−2 RT

0,N−3 · · · R0,0



. (6)

We now illustrate how CEM [8–10] can be extended so that its new version, BCEM, is applicable to the symmetric
block-Toeplitz matrixR from (6). To this end, we embedR in themℓ ×mℓ symmetric block-Toeplitz matrixC for
some even integerm ≥ 2N :

x0 x1 x2 x3 xN−1 xN

s
(0)
1 s

(0)
2 s

(1)
1 s

(1)
2 s

(2)
1 s

(2)
2 s

(N−1)
1 s

(N−1)
2

s̃
(0)
1 s̃

(1)
1 s̃

(2)
1 s̃

(N−1)
1

FIG. 3: 1D uniform gridΩr = {x0, . . . , xN} ∈ Ω = [x0, xN ]. Black circles represent the locations of points

s
(i)
j ∈ Ωs, and the combination of black and gray circles correspond tothe uniform gridΩ̃s.
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C =




C0 C1 · · · Cm−1

Cm−1 C0 · · · Cm−2

...
...

. . .
...

C1 C2 · · · C0


 , (7)

where

Ck =
[
r(g(|s(0)i − s

(k)
j |))

]

1≤i,j≤ℓ
(8)

and

g(x) =

{
x if x < mh/2,

mh− x if x ≥ mh/2.
(9)

Note thatCi = R0,i for 0 ≤ i ≤ N − 1 and thatC is the covariance matrix forZ(x) defined in the circular manner

on the gridΩE
s =

m−1⋃
i=0

Si ⊂ ΩE = [x0, xm], wherexm = x0 +mh andSi are defined in the same way as before.

It is not difficult to see that the matrixC has the following properties:

C0 = CT
0 , (10)

Ck = CT
m−k, for 1 ≤ k ≤ m

2
. (11)

The properties (10) and (11) imply thatC is a symmetric block-circulant matrix.
Let FB be the tensor product of a one-dimensional discrete FouriermatrixF 1

m of orderm and an identity matrix
Iℓ of sizeℓ× ℓ:

FB = F 1
m ⊗ Iℓ =




Iℓ Iℓ Iℓ · · · Iℓ
ω0Iℓ ω1Iℓ ω2Iℓ · · · ωm−1Iℓ
ω2

0Iℓ ω2
1Iℓ ω2

2Iℓ · · · ω2
m−1Iℓ

...
...

...
. . .

...
ωm−1

0 Iℓ ωm−1
1 Iℓ ωm−1

2 Iℓ · · · ωm−1
m−1Iℓ



.

The matrixC is unitarily block diagonalizable byFB [10, 19], i.e., there existsℓ×ℓ matricesΛk, k = 0, 1, . . . ,m−1,
such that

C =
1

m
FBΛF

H
B , whereΛ =




Λ0 0 · · · 0
0 Λ1 · · · 0
...

...
. . .

...
0 0 · · · Λm−1


 . (12)

HereH denotes the conjugate transpose. Similarly to the eigenvalue decomposition of a symmetric circulant matrix
whose eigenvalues can be calculated by performing a discrete Fourier transform of its first row (or column), the block
matrices on the diagonal ofΛ can be computed as

[C0 C1 · · ·Cm−1]FB = [Λ0 Λ1 · · ·Λm−1] , (13)

or in the component-wise form,

[
Ci,j

0 Ci,j
1 · · ·Ci,j

m−1

]
F 1
m =

[
Λi,j
0 Λi,j

1 · · ·Λi,j
m−1

]
, where 1 ≤ i, j ≤ ℓ. (14)

Since the block circulant matrixC is real and symmetric,Λk are Hermitian. Furthermore, all the diagonal elements
of Λk are equal. Therefore, onlyℓ(ℓ+ 1)/2− (ℓ − 1) applications ofF 1

m are required for computingΛ.
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Remark 1. Consider a uniform grid, i.e., a block-regular grid with thesize of a regular grid being a multiple of the
number of blocks or, in other words, the points in eachSi being uniformly located. Then BCEM is applicable on the
uniform grid (recall that CEM works on regular grids only). Since the covariance depends on the distance between
points only, the block-circulant matrixC on the uniform grid satisfies the relationship

Ca,b
k = Cc,d

k if |a− b| = |c− d|.

Consequently,Λk in (13) are Toeplitz and the number of 1D FFTF 1
m to compute distinctive values ofΛ is equal to

ℓ. Thus, in BCEM the block-circulant matrix can be diagonalized by usingℓ FFTs of orderm followed by using a
Cholesky decomposition of the block-diagonal matrixΛ, whose block entries are of sizeℓ× ℓ. For smallℓ, the overall
computational cost is dominated byO(ℓm log2 m). On the other hand, the complexity of CEM is dominated by FFTs
of ordermℓ, which gives the overall costO(mℓ log2 mℓ). Hence, BCEM can outperform CEM on the uniform grid,
where both CEM and BCEM use the same covariance matrix (see also Remark 5).

The symmetricity ofC also guarantees the spectral decomposition

Λk = UkDkU
H
k , (15)

whereUk is unitary andDk is a real-valued diagonal matrix. The following proposition implies thatΛ from (12) can
be decomposed withm/2 + 1 applications of the spectral decompositions (15).

Proposition 2.1. The block-diagonal matrixΛ from (12) has the property

Λk = Λm−k, for 1 ≤ k ≤ m

2
, (16)

where the bar denotes the matrix with conjugate complex entries.

Proof. Letωn = exp((2πn/m)i) be a root of unity. Then [see (11) and (14)]

Λm−k = C0 +ωm−kC1 + · · ·+ωm−k
m−1Cm−1

= C0 +ωkC1 + · · ·+ωm−1
k Cm−1

= Λk.

It follows from (12) and (15) thatC has the eigenvalue decomposition

C =
1

m
(FBU)D (FBU)

H
, (17)

where the unitary block-diagonal matrixU and the diagonal matrixD are of the form

U =




U0 0 · · · 0
0 U1 · · · 0
...

...
. . .

...
0 0 · · · Um−1


 and D =




D0 0 · · · 0
0 D1 · · · 0
...

...
. . .

...
0 0 · · · Dm−1


 .

We note that C is positive semidefinite if and only ifDi,i
k ≥ 0 for each0 ≤ k ≤ m− 1 and1 ≤ i ≤ ℓ.

Assume for the moment that all the eigenvalues ofC are non-negative. Let two independent random vectorsξ1
andξ2, each of sizem, be normally distributedN (O, Im), i.e.,E[ξiξTj ] = δijIm, whereδij denotes the Kronecker
delta. Setη = U(D/m)1/2(ξ1+iξ2). Then the real and imaginary parts of the vectorζ := FBη give two independent
random vectorsζ1 andζ2 that are both distributed asN(0, C). SinceR is embedded inC, the corresponding parts of
ζ1 andζ2 are distributed asN (O,R). Note that the matrix-vector multiplicationFBη can be calculated component-
wise byℓ applications ofF 1

m.
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The algorithm described above depends on positive semidefiniteness of the symmetric block-circulant matrixC.
The sufficient conditions for symmetric circulant matricesto have all non-negative eigenvalues were developed for
the 1D case in [9] and [8]. Here we extend these conditions to the symmetric block-circulant matrixC from (27). To
this end, we introduce a uniform grid̃Ωs such thatΩs ⊂ Ω̃s and consider the covariance matrixR̃ defined oñΩs. As

Ωs is a subset of̃Ωs, R is a submatrix of the matrix̃R. Let a uniform gridΩ̃E
s contain all points ofΩE

s =
m−1⋃
i=0

Si.

Then the symmetric block-circulant matrixC is a submatrix of a symmetric circulant matrix̃C:

C̃i,j = [r(g(|xi − xj |))] , (18)

where the functiong(x) is as in (9) andxi, xj ∈ Ω̃E
s . Therefore there exists an injection matrixPT such that

C = PT C̃P. (19)

An injection matrix can be built by eliminating rows of the identity matrix, which correspond to points not inΩE
s . For

instance, 


1 0 0 0 0
0 0 1 0 0
0 0 0 0 1




is an injection matrix from{x1, x2, x3, x4, x5} to {x1, x3, x5}. The relationship (19) leads to the following proposi-
tion.

Proposition 2.2. If C̃ is positive semidefinite, then so isC.

When the circulant matrix̃C fails to be positive semidefinite, Wood and Chen [8] suggested to increase the size
of C̃ until it becomes positive semidefinite (the so-called padding technique). From the relationship (19) betweenC
andC̃, the same strategy can be used for the matrixC. That is, increasem until C becomes positive semidefinite.
Therefore the number of blocksm which is required forC to be positive semidefinite depends on the grid size of the
uniform gridΩ̃E

s , not on the number of points inΩs. Thus the number of paddings needed for BCEM is the same as
for CEM (see also Remark 3).

3. MULTIDIMENSIONAL BCEM

In the previous section we illustrated the idea of BCEM in thesimpler setting of 1D space. In this section we present
multidimensional BCEM, the computational complexity of which is discussed in the next section.

We start with introducing the notation which largely follows [10]. LetZd be the set ofd vectors with non-negative
integer components, and0 and1 be thed-dimensional vectors with all components equal to 0 and 1, respectively. For
i = (i[1], . . . , i[d])T , j = (j[1], . . . , j[d])T ∈ Z

d, we define addition inZd:

i+ j = (i[1] + j[1], . . . , i[d] + j[d])T ,

and also the product of elements ofi:

i =
d∏

k=1

i[k].

For anyj ∈ Z
d, all components of which are strictly positive, we define thesetI(j):

I(j) = {i ∈ Z
d : 0 ≤ i[k] ≤ j[k]− 1 for all 1 ≤ k ≤ d}. (20)

Note that the cardinality ofI(j) is equal toj.
Introduce ad-dimensional rectangular parallelepiped,
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Ω =

d∏

i=1

[x0[i], xN[i]] ⊂ R
d, (21)

whereN = (N[1], . . . ,N[d])T ∈ Z
d and the vectorh with the componentsh[i] = (xN[i] − x0[i])/N[i]. Further,

pointsxik = (xik [1], . . . , xik [d])
T with xik [j] = x0[j] + ik[j]h[j] form a regular gridΩr = {xi0 , . . . , xi

N+1−1
} on

the rectangular parallelepipedΩ (see Fig. 4). The domainΩ in (21) can be divided intod-dimensional rectangular
parallelepipeds as

Ω =
⋃

jk∈I(N)

Ωjk , (22)

where

Ωjk =
d∏

i=1

[xjk [i], xjk [i] + h[i]], jk ∈ I(N). (23)

For the purpose of algorithm development, we use a lexicographic ordering ofjk with respect tok, i.e., row after row
and layer after layer (see Fig. 4).

Consider a stationary Gaussian random fieldZ(x), x ∈ R
d, with zero mean and covariance functionr(x). We

assume that the problem at hand is such that we need to sampleZ(x) at the nodess(jk)i defined as follows (see the
examples in the Introduction and also Fig. 4):

s
(jk)
j = xjk + δj , (24)

whereδj = (δj[1], . . . , δj[d])
T with 0 ≤ δj [i] < h[i] for 1 ≤ i ≤ d. Hereℓ is the number of sampling points in each

subdomainΩjk . That is, in eachΩjk the points from the setSjk = {s(jk)1 , . . . , s
(jk)
ℓ } are distributed according to the

same pattern for alljk ∈ I(N). Denote the grid

Ωs =
⋃

jk∈I(N)

Ωjk .

Note thatδj are independent of the index vectorjk. The covariance matrixR of Z(s
(jk)
i ), s(jk)i ∈ Ωs, is block-

Toeplitz. In the one-dimensional case it consists of non-Toeplitz blocks of orderℓ (see Section 2). In thed-dimensional
case withd > 1, it consists of blocks which all have the properties of a correlation matrix in thed − 1 dimensional
space. We emphasize that the matrixR is not Toeplitz and hence CEM is not directly applicable here.

Analogously to CEM, in order to build a block-circulant matrix, we consider an extended domain

ΩE =
d∏

i=1

[x0[i], xm[i]], wherem = (m[1], . . . ,m[d])T with m[i] ≥ 2N[i] andxm[i] = x0[i] + m[i]h[i] for

1 ≤ i ≤ d. Figure 4 shows an example of the computation domainΩ with N = (4, 4)T and the extended domainΩE

with m = (8, 8)T . Vectorsjk ∈ I(m + 1) form the extended regular gridΩE
r = {xjk = (xjk [1], . . . , xjk [d])

T |
jk ∈ I(m + 1)} ⊂ ΩE . There arem+ 1 regular grid points in the setΩE

r . The parallelepipedΩE can be divided
into d-dimensional small parallelepipeds as (see also Fig. 4)

ΩE =
⋃

jk∈I(m)

Ωjk , (25)

whereΩjk , jk ∈ I(m), are as in (23).
We now describe BCEM in thed-dimensional case, which is applicable to our block-Toeplitz covariance matrix

R. In contrast to the 1D setting, where the covariance function is always even because of its symmetry, further clas-
sification of covariance functions is needed in higher dimensional cases. We say thatr is component-wise evenin the
ith coordinate if

r(x[1], . . . ,−x[i], . . . , x[d]) = r(x[1], . . . , x[i] . . . , x[d]) (26)

for all x ∈ Rd; otherwise, we say thatr is uneven component-wisein some coordinates.
For simplicity of the exposition, let us assume for now thatr(x) is component-wise, even in all coordinates. We

discuss a modification of BCEM in the uneven case in Remark 2.
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xj0 xj1 xj2 xj3 xj4 xj5 xj6 xj7 xj8

xj9 xj10 xj11 xj12 xj13 xj14 xj15 xj16 xj17

xj18 xj19 xj20 xj21 xj22 xj23 xj24 xj25 xj26

xj27 xj28 xj29 xj30 xj31 xj32 xj33 xj34 xj35

xj36 xj37 xj38 xj39 xj40 xj41 xj42 xj43 xj44

xj45 xj46 xj47 xj48 xj49 xj50 xj51 xj52 xj53

xj54 xj55 xj56 xj57 xj58 xj59 xj60 xj61 xj62

xj63 xj64 xj65 xj66 xj67 xj68 xj69 xj70 xj71

xj72 xj73 xj74 xj75 xj76 xj77 xj78 xj79 xj80

Ωj0 Ωj1 Ωj2 Ωj3 Ωj4 Ωj5 Ωj6 Ωj7

Ωj9 Ωj10 Ωj11 Ωj12 Ωj13 Ωj14 Ωj15 Ωj16

Ωj18 Ωj19 Ωj20 Ωj21 Ωj22 Ωj23 Ωj24 Ωj25

Ωj27 Ωj28 Ωj29 Ωj30 Ωj31 Ωj32 Ωj33 Ωj34
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FIG. 4: The 2D uniform gridΩE
r = {xj0 = x0, xj1 , . . . , xj

m+1−1
= xm} on the rectangleΩE = [x0[1], xm[1]] ×

[x0[2], xm[2]] for m = (8, 8)T . Nodess(jk)j of the block-regular gridΩE
s are represented by black circles. The

shaded rectangle corresponds to the computation (i.e., thedomain of interest for the problem at hand) domainΩ =
[x0[1], xN[1]]× [x0[2], xN[2]] for N = (4, 4)T .
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We first build the block-circulant embedding of the block-Toeplitz matrixR. Consider the block-circulant matrix
C of the form

C = [Cjajb ]0≤a,b≤m−1 , (27)

where the(i, j)th element of a blockCjajb is equal to

Ci,j
jajb

= r(gm(s
(ja)
i − s

(jb)
j )), (28)

and the vector functiongm(x) = (g1m(x), . . . , gdm(x))T , x ∈ {x ∈ Rd : 0 ≤ |x[i]| < m[i]h[i], i = 1, . . . , d} is
defined by

gim(x) =





x[i], if |x[i]| < m[i]h[i]/2,

x[i]−m[i]h[i], if m[i]h[i]/2 < x[i] < m[i]h[i],

x[i] +m[i]h[i], if m[i]h[i]/2 < −x[i] < m[i]h[i].

(29)

The first block row of the block-circulant matrix C is anℓ× ℓm matrixCf of the form

Cf =
[
Cj0j0 Cj0j1 · · · Cj0jm−1

]
. (30)

Also, note that the covariance matrixR can be expressed via blocksCjajb as

R = [Cjajb ]ja,jb∈I(N). (31)

The block-circulant matrixC is block diagonalizable by a block discrete Fourier transform (BDFT) matrix,
FB = F d

m ⊗ Iℓ, whereF d
m is a d-dimensional DFT matrix. That is, we haveC = (1/m)FBΛF

H
B , whereΛ =

diag(Λ0, . . . ,Λm). The blocks on the diagonal ofΛ can be found by simply taking BDFT of the first block row
[10, 19]. Furthermore, using the fact thatFB is the tensor product involving the identity matrix, we derive the follow-
ing component-wise computation:

[Λi,j
0 · · ·Λi,j

m−1] = FFTd([C
i,j
j0j0

· · ·Ci,j
j0jm−1

]), (32)

where1 ≤ i, j ≤ ℓ and FFTd is thed-dimensional FFT. Note that instead of FFT1 we will write FFT.
Due to the fact thatΛ is Hermitian and all diagonal entries ofΛk are the same, the required number of FFTd of

sizem (which is equivalent to FFT of orderm) in (32) isℓ(ℓ+ 1)/2− (ℓ− 1).
If Λ is positive-definite, the Cholesky decompositionΛ = LLH exists, whereL is a block-diagonal matrix, with

each block being a lower triangular matrix. Then we obtain the decompositionC = (1/m)FBL(FBL)
H .

As in the one-dimensional case (see Section 2), letξ = ξ1 + iξ2 be a complex-valued random vector of orderm

with ξ1 andξ2 being real, normal random vectors such thatE[ξi] = 0 andE[ξiξTj ] = δijI. SetL̃ = (1/m)1/2L and

η = L̃ξ. Multiplying the square root ofC by ξ, we obtain the complex-valued vector

FBη = ζ = ζ1 + iζ2, (33)

with the propertiesE[ζ1ζT1 ] = E[ζ2ζ
T
2 ] = C, andζ1 andζ2 are independent. Using tensor-product properties ofFB ,

ζ can be computed in the component-wise manner:

[ζ[i] ζ[i+ ℓ] . . . ζ[i+ (m− 1)ℓ] = FFTd([η[i] η[i+ ℓ] . . .η[i+ (m− 1)ℓ]) (34)

for 1 ≤ i ≤ ℓ.
To summarize, the new BCEM can be presented in algorithmic form as follows:
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Algorithm 1: Block-circulant embedding method (BCEM)

GivenN ∈ Z
d, x0 ∈ Ω, and strictly positive valued vectorh ∈ Rd,

Step 1. Choose a vectorm ∈ Z
d such thatm[i] ≥ 2N[i] for all 1 ≤ i ≤ d.

Step 2. Compute the first block row of the circulant matrixC as described in (27)–(30).
Step 3. Compute the block-diagonal matrixΛ = diag(Λ0, · · · ,Λm−1) using (32).
Step 4. Compute the square root ofΛ applying Cholesky decompositions to diagonal blocks ofΛ:

Λ = LLH , (35)

whereL is a block-diagonal matrix with lower triangular block of orderℓ.
Step 5. If the Cholesky decomposition fails inStep 4, increasem[i] by one or more and go toStep 2.
Step 6. ComputẽL = (1/m)1/2L.
Step 7. Generate a random complex vector of dimensionmℓ, ξ = ξ1 + iξ2, with two independent vectorsξ1

andξ2 beingN (0, Imℓ). Computeη = L̃ξ.
Step 8. Computez = (ζ[1], . . . , ζ[mℓ])T by applying FFTd ℓ times as in (34).

This algorithm works for all lengthsm[i], 1 ≤ i ≤ d, even and odd, when the covariance functionr(x) is
component-wise even in all coordinates. But, for efficiencypurposes, it is preferable to choosem in Step 1 so that
each of its components is a power of 2 as the algorithm relies on FFT.

Note that ifℓ = 1, thenΩr is regular,C is circular,Λ becomes diagonal, instead of block diagonal, and Algorithm1
degenerates to the standard CEM.

Remark 2. Algorithm 1 is applicable when the covariance function is component-wise even [see (26)]. Although the
covariance function is even by definition, i.e.,r(−x) = r(x), it could be component-wise uneven, e.g.,

r(x) = exp(−xTAx) with A =

[
2 −1
−1 2

]
, x ∈ R

2

is uneven. In this case, the matrixC defined by the vector functiongm in (29) usually does not have block-circulant
structure because of conflicting definitions at the pointsx with x[i] = m[i]h[i]/2, if r is uneven in theith coordinate.
Two adjustments to make the CEM work in uneven cases were suggested in [8], which can be applied to BCEM by
modifying Algorithm 1 as follows:

If r is uneven in theith coordinate, either

(a) choosem[i] to be an odd integer, e.g., a power of three;

or

(b) still choosem[i] to be an even integer and defineCjk using (28) and (29), except putr(x) = 0 for all x such
that |x[i]| = m[i]h[i]/2 for somei.

In either case, the resulting matrixC has a block-circulant structure, and thus Algorithm 1 can beseamlessly extended
to the uneven case with the aforementioned modifications.

Remark 3. As mentioned earlier, the matrixC is often negative definite in practical applications of CEM and BCEM.
Following [8], we increase the matrixC in Algorithm 1 (see its Step 5) until it becomes positive semidefinite (the
padding technique). The padding technique is universal andusually efficient when the correlation length of a random
field is in a range from small to medium relative to the size of acomputational domain and the field is not too smooth.
Otherwise, the use of the padding technique could be very expensive. There are two recently developed alternatives
to padding (a cutoff of the circulant matrix [13, 14] and smoothing window circulant embedding [15]), which can
deal with the problem of negative definiteness of circulant matrices effectively. The techniques from [13–15] are as
applicable to BCEM as they are for CEM.
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The equispaced FFT is highly parallelizable in high dimensions, and its highly scalable implementations are
proposed in [20, 21]. This could be beneficial in the standardCEM because its computation is dominated by the
FFT. Still equipped with the parallelism of the FFT, BCEM canbe further parallelized in a natural way because the
applications of FFTd in Step 3 and Step 8 of Algorithm 1 can be performed separatelyand simultaneously. Moreover,
block-diagonal matrix operations in Step 4 and Step 7 can be performed separately and simultaneously. Therefore, the
overall BCEM algorithm contains two-level parallelism, giving us a significant advantage over the standard CEM.

As we see in the next section, BCEM can be faster than CEM, bothin taking square roots of the corresponding
circulant matrices (performed, of course, only once per thewhole Monte Carlo simulation) and in sampling the random
field required in each Monte Carlo run. The latter is usually more important in Monte Carlo-type simulations.

4. COMPUTATIONAL COMPLEXITY OF BCEM

In this section we analyze the computational complexity of BCEM. To this end, we use the same convention as in
Golub and Van Loan [22] for counting the number of floating point operations:5m log2 m flops for FFT of sizem
andn3/3 flops for the Cholesky decomposition of a matrix of ordern.

Step 3 of Algorithm 1 is the initial factorization of the block-circulant matrixC by taking BDFT of its first block
row, which can be computed using the ordinary DFT in (32) at the cost

cost1 =

(
ℓ(ℓ+ 1)

2
− (ℓ− 1)

)
(5m log2 m) flops. (36)

Here we took into account that eachΛk is Hermitian and its diagonal elements have the same value.
In Step 4, the square root operation on the block-diagonal matrix Λ with m blocks of orderℓ can be performed on

each block separately using the Cholesky decomposition method. In Proposition 2.1, we proved in the one-dimensional
case thatΛ has pairs of complex conjugate blocks,Λk andΛm−k, which allows us to compute the square root ofΛk

and use its complex conjugate as a square root of its complex conjugate pairΛm−k. This is based on the periodicity
and conjugate symmetry of FFT. Hence, Proposition 2.1 can beextended to the higher-dimensional cases. Then the
matrixΛ can be decomposed at the cost

cost2 =

d∏

i=1

(
m[i]

2
+ 1

)
ℓ3

3
flops. (37)

Remark 4. Note that if the nodes ofSjk are regularly (uniformly) distributed inΩjk for all jk ∈ I(m), which
is often the case in applications (see, e.g., Example 1.1), then all blocks on the diagonal ofΛ are block Toeplitz
(Toeplitz). Toeplitz matrix and block-Toeplitz matrix canbe decomposed using Schur’s algorithm [23] and block
Schur’s algorithm [24], respectively, which haveO(ℓ2) complexity as opposed toO(ℓ3) for the standard Cholesky
decomposition. Making use of Schur’s algorithms can reducethe cost of Algorithm 1.

In Step 1, computing a realization ofζ requires block-diagonal matrix-vector multiplicationL̃ξ andℓ applications
of FFT of orderm in (34) at the cost

cost3 = ℓ2m flops (38)

and
cost4 = ℓ(5m log2 m) flops, (39)

respectively.
To conclude, the cost of BCEM isO(ℓ3m+ ℓ2m log2 m) flops. In practical applications of BCEM (see examples

in the Introduction) the size of blocksℓ is relatively small while the number of blocksm is large. Recall that BCEM is
designed for block-regular gridsΩs. Its main computational advantage in comparison with CEM (which is designed
for regular grids) comes from the fact that the use of CEM in the case of simulations on a block-regular gridΩs

requires regularization ofΩs, i.e., adding a significant number of extra nodes which BCEM does not need. Hence
BCEM works on a grid with a smaller number of nodes than CEM andneeds to generate random vectorsζ of smaller
size than CEM (and hence makes fewer calls to a random number generator to sampleξ).
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Remark 5. It can be shown that the use of BCEM on a regular grid split in blocks of sizeℓ can be more effective in
sampling the random field than CEM but it is computationally more expensive in the matrix decomposition than CEM.
The latter can be overcome by exploiting the fact that BCEM isparallelizable in comparison with CEM. Thus BCEM
can be more effective than CEM, even in the case of regular grids for which CEM is designed.

We now compare computational the complexity of BCEM and CEM using the three examples from the Introduc-
tion and the following exponential covariance function [cf. (28)]:

r(x) = σ2exp

(
−‖x‖1

0.3

)
, (40)

where‖ · ‖1 meansL1 norm. We note that the circulant matrixC [cf. (30), (28)] of the sizem = 2N formed by (40)
is always positive definite (see, e.g., [9]). This means, in particular, that Step 1 (i.e., padding) of Algorithm 1 is not
needed in this case. For simplicity, we consider the domainΩ to be the unit square in the examples.

Example 4.1. Triangular finite element with a quadrature point located atthe barycenter of the triangle.

In Example 1.1 (see Fig. 1), each rectangular block containsnine uniform grid nodes. Hence the order of the circulant
matrix used by CEM is9m, wherem = 2N andm is the number of rectangular blocks in the extended domainΩE.
Then the matrix decomposition cost for CEM is45m log2 9m flops, and generation of each realization of the random
field requires another45m log2 9m flops.

Here BCEM uses only two points in each rectangular block, so the order of the block-circulant matrix is2m.
Substitutingℓ = 2 into (36) and (37), the total matrix decomposition cost for BCEM is 10m log2 m + (m[1]/2 +
1)(m[2]/2 + 1)(8/3) flops. Each realization of the random field is generated at thecost of4m + 10m log2 m flops
[see (38) and (39)].

Figure 5 shows the floating point operations required by the two algorithms. One can see that BCEM is more
effective in both procedures and that the complexity of BCEMgrows at roughly the same rate as for CEM. Compared
to CEM, BCEM reduces the matrix decomposition cost and the generation cost approximately in2.5 times and4
times, respectively. The improvement in computational efficiency is due to the fact that BCEM works with just 2/9 of
nodes that CEM uses to build the circulant matrix. This also means that BCEM requires 4.5 times less memory than
CEM.
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FIG. 5: The floating point operations required for the matrix decomposition and random field generation stages of
CEM and BCEM in Example 4.1.
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To compare the performance of BCEM and CEM further, we generated samples of the random field by these
two methods on an Intel Xeon E5-2450, 96GB RAM computer usingMATLAB R2014a. Figure 6 shows the average
computational time of generation of a single realization ofthe random field by both methods and how it increases with
increasingN. Table 2 gives the CPU time and the speedup in generating a random vector using BCEM against those
using CEM. For both methods, the CPU time increases with increase ofN at about the same rate as the theoretical rate
shown in Fig. 5 (right). We see that BCEM is about 4.3–4.5 times faster than CEM, which is close to the theoretical
cost estimation in Fig. 5.

Example 4.2. Cell-centered finite volume discretization in multilevel Monte Carlo (MLMC) computation.

In Example 1.2, BCEM uses 5 out of 16 of the uniform nodes required for CEM in each individual block to generate
random variables located at the centers of both the fine and coarse cells. That is, CEM should generate random
variables at the extra 11 nodes that are not used in the finite-volume discretization and are not used by BCEM. Then
memory requirement for CEM and BCEM is16m and5m, respectively, which makes BCEM more attractive when
the number of blocks is large.

Whereas the matrix decomposition and sampling costs in CEM both require80m log2 16m flops, the computa-
tional costs of the matrix decomposition and sampling in BCEM are55m log2 m+(m[1]/2+1)(m[2]/2+1)(125/3)
flops and25m + 25m log2 m flops, respectively [see (36)–(39) withℓ = 5]. Note that the total costs are domi-
nated bym log2 m. Hence, for largem, the ratio of the matrix decomposition in CEM to one in BCEM isclose to
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FIG. 6: Average time required to simulate a single realization of the random field in Example 4.1 computed using
1000 independent samples.

TABLE 2: Average time required to
simulate a single realization of the ran-
dom field in Example 4.1 computed us-
ing 1000 independent samples

CPU Time (s)
N BCEM CEM Speedup
32 0.60 2.71 4.5
64 2.32 11.39 4.9
128 11.34 48.55 4.3
256 49.37 212.21 4.3
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80/55 ≈ 1.45. For the sample generation cost, the ratio is close to80/25 ≈ 3.2. These theoretical computational
costs are shown in Fig. 7.

Figure 8 gives the CPU times for the random field generation. We see that the actual computational cost increases
with increase ofN, similarly to the theoretical one as in Fig. 7. Table 3 demonstrates that BCEM is nearly 3 times
faster than CEM as we expected from Table 1 and Fig. 7. Also note that BCEM is highly parallelizable, so the
computation cost can be further reduced using parallel algorithms.

Example 4.3. Conditional random field generation on block-regular grids.

Consider the conditional random field generation based on CEM introduced earlier in Example 1.3. For our experi-
ments, we use the same block-regular grid as in Example 4.1 and choose synthetic 10 observation data. The coordinates
of 10 points and observed values are provided in Table 4.
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FIG. 7: The floating point operations required for the matrix decomposition and random field generation stages of
CEM and BCEM in Example 4.2.
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FIG. 8: Average time required to simulate a single realization of the random field in Example 4.2 computed using
1000 independent samples.
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TABLE 3: Average time required to
simulate a single realization of the ran-
dom field in Example 4.2 computed us-
ing 1000 independent samples

CPU time (s)
N CEM BCEM Speedup
32 0.94 3.08 3.3
64 4.62 13.71 3.0
128 23.37 68.28 2.9
256 101.82 301.24 3.0

TABLE 4: Cartesian coordinates of 10 points in the domain
Ω = [0, 1]2 and synthetic observation values,z

x[1] x[2] z x[1] x[2] z
0.2512 0.7264 0.6746 0.1400 0.1922 1.2083
0.5363 0.2909 4.7737 0.2682 0.6228 1.2606
0.7349 0.5463 2.2704 0.4017 0.1244 –3.2401
0.3480 0.9252 0.6082 0.4705 0.2330 –2.3023
0.5128 0.2914 5.1420 0.9608 0.4613 –1.0330

Recall that decomposition of the matrixR in (1) is computationally dominated by the cost of formingK in (2),
which requiresO(n2n1 logn1) flops, wheren1 is the size of a (block) circulant matrix andn2 is the number of
observations. Note thatn2 ≪ n1 andn2 = 10 in this example.

In order to compare efficiency, we measured the CPU times (in seconds) obtained by forming the matricesK
using the two algorithms. One can see from Fig. 9 and Table 5 that BCEM achieves a speedup factor of 6 over CEM
in forming the matricesK. We also note that BCEM requires 4.5 times less memory than CEM.
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FIG. 9: CPU times for forming the matrixK.
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TABLE 5: CPU time Average time re-
quired to simulate a single realization of
the random field in Example 4.2 com-
puted using 1000 independent samples

CPU time (s)
N CEM BCEM Speedup
32 0.0338 0.0043 7.9
64 0.1500 0.0247 6.0
128 0.5710 0.1100 5.1
256 2.6700 0.4180 6.3
512 11.6000 1.8700 6.2

We have compared BCEM and CEM on the 2D examples here. It is notdifficult to see (cf. Table 1) that in 3D
cases BCEM can outperform CEM even more dramatically.

Remark 6. The MATLAB codes for BCEM used for Examples 4.1–4.3 are available at https://github.com/parkmh/
bcempaper.
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