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Nonintrusive polynomial chaos expansion (PCE) and stochastic collocation (SC) methods are attractive techniques for
uncertainty quantification due to their fast convergence properties and ability to produce functional representations
of stochastic variability. PCE estimates coefficients for known orthogonal polynomial basis functions based on a set
of response function evaluations, using sampling, linear regression, tensor-product quadrature, cubature, or Smolyak
sparse grid approaches. SC, on the other hand, forms interpolation functions for known coefficients and requires the
use of structured collocation point sets derived from tensor product or sparse grids. Once PCE or SC representations
have been obtained for a response metric of interest, analytic expressions can be derived for the moments of the ex-
pansion and for the design derivatives of these moments, allowing for efficient design under uncertainty formulations
involving moment control (e.g., robust design). This paper presents two approaches for moment design sensitivities,
one involving a single response function expansion over the full range of both the design and uncertain variables and
one involving response function and derivative expansions over only the uncertain variables for each instance of the de-
sign variables. These two approaches present trade-offs involving expansion dimensionality, global versus local validity,
collocation point data requirements, and L2 (mean, variance, probability) versus L∞ (minima, maxima) interrogation
requirements. Given this capability for analytic moments and moment sensitivities, bilevel, sequential, and multifidelity
formulations for design under uncertainty are explored. Computational results are presented for a set of algebraic bench-
mark test problems, with attention to design formulation, stochastic expansion type, stochastic sensitivity approach, and
numerical integration method.

KEY WORDS: stochastic optimization, computational design, polynomial chaos, stochastic collocation,
stochastic sensitivity analysis

1. INTRODUCTION

Uncertainty quantification (UQ) is the process of determining the effect of input uncertainties on response metrics
of interest. These input uncertainties may be characterized as either aleatory uncertainties, which are irreducible
variabilities inherent in nature, or epistemic uncertainties, which are reducible uncertainties resulting from a lack
of knowledge. Because sufficient data are available for characterizing aleatory uncertainties, probabilistic methods
are commonly used for computing response distribution statistics based on input probability distribution specifica-
tions. Conversely, for epistemic uncertainties, data are generally too sparse to support objective probabilistic input
descriptions, leading either to subjective probabilistic descriptions (e.g., assumed priors in Bayesian analysis) or non-
probabilistic methods based on interval specifications.

One technique for the analysis of aleatory uncertainties using probabilistic methods is the polynomial chaos expan-
sion (PCE) approach to UQ. For smooth functions (i.e., analytic, infinitely differentiable) inL2 (i.e., possessing finite
variance), exponential convergence rates can be obtained under order refinement for integrated statistical quantities of

1Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration under Contract
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interest, such as mean, variance, and probability. In this work, generalized polynomial chaos using the Wiener-Askey
scheme [1] provides a foundation in which Hermite, Legendre, Laguerre, Jacobi, and generalized Laguerre orthog-
onal polynomials are used for modeling the effect of continuous uncertain variables described by normal, uniform,
exponential,β, andγ probability distributions, respectively.2 These polynomial selections are optimal for these dis-
tribution types since they are orthogonal with respect to an inner product weighting function that corresponds3 to
the probability density functions for these continuous distributions. Orthogonal polynomials can be computed for any
positive weight function; thus, these five classical orthogonal polynomials may be augmented with numerically gener-
ated polynomials for other probability distributions (e.g., for lognormal, extreme value, and histogram distributions).
When independent standard random variables are used (or computed through transformation), the variable expansions
are uncoupled, allowing the polynomial orthogonality properties to be applied on a per-dimension basis. This allows
one to mix and match the polynomial basis used for each variable without interference with the spectral projection
scheme for the response.

In non intrusive PCE, simulations are used as black boxes and the calculation of chaos expansion coefficients
for response metrics of interest is based on a set of simulation response evaluations. To calculate these response
PCE coefficients, two primary classes of approaches have been proposed: spectral projection and linear regression.
The spectral projection approach projects the response against each basis function using inner products and employs
the polynomial orthogonality properties to extract each coefficient. Each inner product involves a multidimensional
integral over the support range of the weighting function, which can be evaluated numerically using sampling, tensor-
product quadrature, Smolyak sparse grid [2], or cubature [3] approaches. The linear regression approach uses a single
linear least-squares solution to solve for the set of PCE coefficients that best match a set of response values obtained
from either a design of computer experiments (“point collocation” [4]) or from the subset of tensor Gauss points with
highest product weight (“probabilistic collocation” [5]).

Stochastic collocation (SC) [6] is a second stochastic expansion approach that is closely related to PCE. As for
PCE, exponential convergence rates can be obtained under order refinement for integrated statistical quantities of in-
terest, provided that the response functions are smooth with finite variance. The primary distinction is that, whereas
PCE estimates coefficients for known orthogonal polynomial basis functions, SC forms Lagrange interpolation func-
tions for known coefficients. Interpolation is performed on structured grids such as tensor-product or sparse grids.
Starting from a tensor-product multidimensional Lagrange interpolant, we have the feature that theith interpolation
polynomial is 1 at collocation pointi and 0 for all other collocation points, leading to the use of expansion coefficients
that are just the response values at each of the collocation points. Sparse interpolants are weighted sums of these
tensor interpolants; however, they are only interpolatory for sparse grids based on fully nested rules and will exhibit
some interpolation error at the collocation points for sparse grids based on non-nested rules. A key to maximizing
performance with SC is performing collocation using the Gauss points and weights from the same optimal orthogonal
polynomials used in PCE. For use of standard Gauss integration rules (not nested variants such as Gauss-Patterson
or Genz-Keister) within tensor-product quadrature, tensor PCE expansions, and tensor SC interpolants are equiva-
lent in that identical polynomial approximations are generated [7]. Moreover, this equivalence can be extended to
sparse grids based on standard Gauss rules, provided that a sparse PCE is formed based on a weighted sum of tensor
expansions [8].

Once PCE or SC representations have been obtained for the response metrics of interest, analytic expressions can
be derived for the moments of the expansions (from integration over the aleatory/probabilistic random variables) as
well as for various sensitivity measures. Local sensitivities (i.e., derivatives) and global sensitivities [9] (i.e., ANOVA,
variance-based decomposition) of the response metrics may be computed with respect to the expansion variables, and
local sensitivities of probabilistic response moments may be computed with respect to other nonprobabilistic vari-
ables (e.g., design or epistemic uncertain variables). This latter capability allows for efficient design under uncertainty
and mixed aleatory-epistemic UQ formulations involving moment control or bounding. This paper presents two ap-
proaches for calculation of sensitivities of moments with respect to nonprobabilistic dimensions (design or epistemic),
one involving response function expansions over both probabilistic and nonprobabilistic variables and one involving

2Orthogonal polynomial selections also exist for discrete probability distributions, but are not explored here.
3Identical support range; weight differs by at most a constant factor.
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response derivative expansions over only the probabilistic variables. The ability to compute analytic statistics and their
design derivatives using these two approaches enables bilevel, sequential, and multifidelity formulations to design un-
der uncertainty. Relative to similar design optimization approaches based on local reliability UQ methods [10, 11], it
is expected that new approaches based on stochastic expansions will provide fast convergence and mitigate algorith-
mic robustness issues due to nonsmoothness, multimodality, and high degrees of nonlinearity in the response metrics
of interest.

Sections 2–4 overview the foundational components of stochastic expansions, Section 5 describes stochastic sen-
sitivity analysis approaches and their usage within several design under uncertainty formulations, Section 6 presents
computational results for several benchmark test problems, and Section 7 provides concluding remarks.

2. POLYNOMIAL BASIS

2.1 Orthogonal Polynomials in the Askey Scheme

Table 1 shows the set of classical orthogonal polynomials that provides an optimal basis for different continuous proba-
bility distribution types. It is derived from the family of hypergeometric polynomials known as the Askey scheme [12],
for which the Hermite polynomials originally employed by Wiener [13] are a subset. The optimality of these basis se-
lections derives from their orthogonality with respect to weighting functions that correspond to the probability density
functions (PDFs) of the continuous distributions when placed in a standard form. The density and weighting functions
differ by a constant factor due to the requirement that the integral of the PDF over the support range is one.

Note that Legendre is a special case of Jacobi forα = β = 0, Laguerre is a special case of generalized Laguerre
for α = 0, Γ(a) is the Gamma function which extends the factorial function to continuous values, andB(a, b) is theβ

function defined asB(a, b) = [Γ(a)Γ(b)]/[Γ(a + b)]. Some care is necessary when specifying theα andβ parameters
for the Jacobi and generalized Laguerre polynomials because the orthogonal polynomial conventions [14] differ from
the common statistical PDF conventions. The former conventions are used in Table 1.

2.2 Numerically Generated Orthogonal Polynomials

If all random inputs can be described using independent normal, uniform, exponential,β, andγ distributions, then
generalized PCE can be directly applied. If correlation or other distribution types are present, then additional tech-
niques are required. One solution is to employ nonlinear variable transformations as described in Section 3.3.1 such
that an Askey basis can be applied in the transformed space. This can be effective as shown in [15], but convergence
rates are typically degraded. In addition, correlation coefficients are warped by the nonlinear transformation [16], and

TABLE 1: Linkage between standard forms of continuous probability distributions and Askey scheme of
continuous hyper geometric polynomials.

Distribution Density function Polynomial Weight function Support range

Normal
1√
2π

e−x2/2 HermiteHen(x) e−x2/2 [−∞,∞]

Uniform
1
2

LegendrePn(x) 1 [−1, 1]

Beta
(1− x)α(1 + x)β

2α+β+1B(α + 1, β + 1)
JacobiP (α,β)

n (x) (1− x)α(1 + x)β [−1, 1]

Exponential e−x LaguerreLn(x) e−x [0,∞]

Gamma
xαe−x

Γ(α + 1)
Gen. LaguerreL(α)

n (x) xαe−x [0,∞]
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simple expressions for these transformed correlation values are not always readily available. An alternative is to nu-
merically generate the orthogonal polynomials (using Gauss-Wigert [17], discretized Stieltjes [18], Chebyshev [18],
or Gramm-Schmidt [19] approaches) and then compute their Gauss points and weights (using the Golub-Welsch [20]
tridiagonal eigensolution). These solutions are optimal for given random variable sets having arbitrary PDFs and
eliminate the need to induce additional nonlinearity through variable transformations, but performing this process
for general joint density functions with correlation is a topic of ongoing research (refer to Section 3.3 for additional
details).

2.3 Interpolation Polynomials

Lagrange polynomials interpolate a set of points in a single dimension using the functional form

Lj =
m∏

k=1
k 6=j

ξ− ξk

ξj − ξk
(1)

where it is evident thatLj is 1 atξ = ξj , is 0 for each of the pointsξ = ξk, and has orderm− 1.
For interpolation of a response functionR in one dimension overm points, the expression

R(ξ) ∼=
m∑

j=1

r(ξj)Lj(ξ) (2)

reproduces the response valuesr(ξj) at the interpolation points and smoothly interpolates between these values at
other points. For interpolation in multiple dimensions, a tensor-product approach can be used wherein

R(ξ) ∼=
mi1∑

j1=1

. . .

min∑

jn=1

r
(
ξi1

j1
, . . . , ξin

jn

) (
Li1

j1
⊗ . . .⊗ Lin

jn

)
(3)

wherei = (m1, m2, . . . ,mn) are the number of nodes used in then-dimensional interpolation andξi
j is thejth point

in theith direction. As will be seen later (Section 4.1.3), interpolation on sparse grids involves a summation of these
tensor products with varyingi levels.

3. STOCHASTIC EXPANSION METHODS

3.1 Generalized Polynomial Chaos

The set of polynomials from Sections 2.1–2.2 are used as an orthogonal basis to approximate the functional form
between the stochastic response output and each of its random inputs. The chaos expansion for a responseR takes the
form

R = a0B0 +
∞∑

i1=1

ai1B1(ξi1) +
∞∑

i1=1

i1∑

i2=1

ai1i2B2(ξi1 , ξi2) +
∞∑

i1=1

i1∑

i2=1

i2∑

i3=1

ai1i2i3B3(ξi1 , ξi2 , ξi3) + ... (4)

where the random vector dimension is unbounded and each additional set of nested summations indicates an additional
order of polynomials in the expansion. This expression can be simplified by replacing the order-based indexing with
a term-based indexing

R =
∞∑

j=0

αjΨj(ξ) (5)
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where there is a one-to-one correspondence betweenai1i2...in
andαj and betweenBn(ξi1 , ξi2 , ..., ξin

) andΨj(ξ).
Each of theΨj(ξ) are multivariate polynomials that involve products of the one-dimensional polynomials. For exam-
ple, a multivariate Hermite polynomialB(ξ) of ordern is defined from

Bn(ξi1 , ..., ξin
) = e(ξT ξ)/2(−1)n ∂n

∂ξi1 ...∂ξin

e−(ξT ξ)/2 (6)

which can be shown to be a product of one-dimensional Hermite polynomials involving a multi-indexmj
i ,

Bn(ξi1 , ..., ξin
) = Ψj(ξ) =

n∏

i=1

ψmj
i
(ξi) (7)

In the case of a mixed basis, the same multi-index definition is employed although the one-dimensional polynomials
ψmj

i
are heterogeneous in type.

3.1.1 Expansion Truncation and Tailoring

In practice, one truncates the infinite expansion at a finite number of random variables and a finite expansion order

R ∼=
P∑

j=0

αjΨj(ξ) (8)

Traditionally, the polynomial chaos expansion includes a complete basis of polynomials up to a fixed total-order
specification. That is, for an expansion of total orderp involving n random variables, the multi-index defining the set
of Ψj is constrained by

n∑

i=1

mj
i ≤ p (9)

The total number of termsNt for this expansion is given by

Nt = 1 + P = 1 +
p∑

s=1

1
s!

s−1∏
r=0

(n + r) =
(n + p)!

n!p!
(10)

This traditional approach will be referred to as a “total-order expansion.”
An important alternative approach is to employ a “tensor-product expansion,” in which polynomial order bounds

are applied on a per-dimension basis (no total-order bound is enforced) and all combinations of the one-dimensional
polynomials are included. That is, the multi-index defining the set ofΨj is constrained by

mj
i ≤ pi (11)

wherepi is the polynomial order bound for theith dimension. In this case, the total number of termsNt is

Nt = 1 + P =
n∏

i=1

(pi + 1) (12)

It is apparent from Eq. (12) that the tensor-product expansion readily supports anisotropy in polynomial order
for each dimension, since the polynomial order bounds for each dimension can be specified independently. It is also
feasible to support anisotropy with total-order expansions, through pruning polynomials that satisfy the total-order
bound but violate individual per-dimension bounds [the number of these pruned polynomials would then be subtracted
from Eq. (10)]. Finally, custom tailoring of the expansion form can also be explored, e.g., to closely synchronize with
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monomial coverage in sparse grids through use of a summation of tensor expansions (see Section 4.1.3). In all cases,
the specifics of the expansion are codified in the multi-index, and subsequent machinery for estimating response values
and statistics from the expansion can be performed in a manner that is agnostic to the specific expansion form.

3.2 Stochastic Collocation

The SC expansion is formed as a sum of a set of multidimensional Lagrange interpolation polynomials, one polyno-
mial per unique collocation point. Because these polynomials have the feature of being equal to 1 at their particular
collocation point and 0 at all other points,4 the coefficients of the expansion are just the response values at each of the
collocation points. This can be written as

R ∼=
Np∑

j=1

rjLj(ξ) (13)

where the set ofNp collocation points involves a structured multidimensional grid [a tensor-product grid as in Eq. (3)
or a Smolyak sparse grid]. There is no need for tailoring of the expansion form as there is for PCE (i.e., to synchronize
the expansion polynomials with the set of integrable monomials) because the polynomials that appear in the expansion
are determined by the Lagrange construction [Eq. (1)]. That is, any tailoring or refinement of the expansion occurs
through the selection of points in the interpolation grid and the polynomial orders of the basis are adapted implicitly.

3.3 Transformations to Independent Standard Variables

Polynomial chaos and stochastic collocation are expanded using polynomials that are functions of independent stan-
dard random variablesξ. Thus, a key component of either approach is performing a transformation of variables from
the original random variablesx to independent standard random variablesξ and then applying the stochastic expan-
sion in the transformed space. This notion of independent standard space is extended over the notion of “u-space”
used in reliability methods [10, 11] in that it extends the standardized set beyond standard normals. For distributions
that are already independent, three different approaches are of interest, as follows:

1. Extended basis:For each Askey distribution type, employ the corresponding Askey basis (Table 1). For non-
Askey types, numerically generate an optimal polynomial basis for each independent distribution as described
in Section 2.2. With usage of the optimal basis corresponding to each of the random variable types, we can
exploit basis orthogonality under expectation [e.g., Eq. (16)] without requiring a transformation of variables,
thereby avoiding inducing additional nonlinearity that could slow convergence.

2. Askey basis:For non-Askey types, perform a nonlinear variable transformation from a given input distribution
to the most similar Askey basis. For example, lognormal distributions might employ a Hermite basis in a trans-
formed standard normal space and loguniform, triangular, and histogram distributions might employ a Legendre
basis in a transformed standard uniform space. All distributions then employ the Askey orthogonal polynomials
and their associated Gauss points/weights.

3. Wiener basis:For non-normal distributions, employ a nonlinear variable transformation to standard normal
distributions. All distributions then employ the Hermite orthogonal polynomials and their associated Gauss
points/weights.

For dependent distributions, we must first perform a nonlinear variable transformation to uncorrelated standard normal
distributions due to the independence of decorrelated Gaussians. This involves the Nataf transformation, described in
Section 3.3.1. We then have the following choices:

1. Single transformation:Following the Nataf transformation to independent standard normal distributions, em-
ploy the Wiener basis in the transformed space.

4For tensor interpolants and sparse interpolants based on fully nested rules (e.g., Clenshaw-Curtis, Gauss-Patterson, Genz-Keister);
sparse interpolants based on non-nested rules will exhibit some interpolation error at the collocation points.
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2. Double transformation:From independent standard normal space, transform back to either the original marginal
distributions or the desired Askey marginal distributions and employ an extended or Askey basis, respectively,
in the transformed space. Independence is maintained, but the nonlinearity of the Nataf transformation is at least
partially mitigated.

The results in Section 6 all employ a single transformation for dependent variables in combination with an Askey
basis for independent variables.

3.3.1 Nataf Transformation

The transformation from correlated non-normal distributions to uncorrelated standard normal distributions is denoted
asξ = T (x) with the reverse transformation denoted asx = T−1(ξ). These transformations are nonlinear, in gen-
eral, and possible approaches include the Rosenblatt [21], Nataf [16], and Box-Cox [22] transformations. The results
in this paper employ the Nataf transformation, which is suitable for the common case when marginal distributions
and a correlation matrix are provided, but full joint distributions are not known.5 The Nataf transformation occurs
in the following two steps. To transform between the original correlatedx-space variables and correlated standard
normals (“z-space”), a cumulative distribution function (CDF) matching condition is applied for each of the marginal
distributions,

Φ(zi) = F (xi) (14)

whereΦ() is the standard normal cumulative distribution function andF () is the cumulative distribution function of
the original probability distribution. Then, to transform between correlated z-space variables and uncorrelatedξ-space
variables, the Cholesky factorL of a modified correlation matrix is used,

z = Lξ (15)

where the original correlation matrix for non-normals inx-space has been modified to represent the corresponding
“warped” correlation inz-space [16].

4. NON-INTRUSIVE METHODS FOR EXPANSION FORMATION

The major practical difference between PCE and SC is that, in PCE, one must estimate the coefficients for known
basis functions, whereas in SC, one must form the interpolants for known coefficients. PCE estimates its coefficients
using any of the following approaches: random sampling, tensor-product quadrature, Smolyak sparse grids, cubature,
or linear regression. In SC, the multidimensional interpolants need to be formed over structured data sets, such as
point sets from quadrature or sparse grids; approaches based on random sampling may not be used.

4.1 Spectral Projection

The spectral projection approach projects the response against each basis function using inner products and employs
the polynomial orthogonality properties to extract each coefficient. Similar to a Galerkin projection, the residual error
from the approximation is rendered orthogonal to the selected basis. From Eq. (8), taking the inner product of both
sides with respect toΨj and enforcing orthogonality yields

αj =
〈R, Ψj〉
〈Ψ2

j 〉
=

1
〈Ψ2

j 〉
∫

Ω

R Ψj %(ξ) dξ (16)

where each inner product involves a multidimensional integral over the support range of the weighting function. In
particular,Ω = Ω1 ⊗ · · · ⊗ Ωn, with possibly unbounded intervalsΩj ⊂ R and the tensor product form%(ξ) =∏n

i=1 %i(ξi) of the joint probability density (weight) function. The denominator in Eq. (16) is the norm squared of

5If joint distributions are known, then the Rosenblatt transformation is preferred.
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the multivariate orthogonal polynomial, which can be computed analytically using the product of univariate norms
squared

〈Ψ2
j 〉 =

n∏

i=1

〈ψ2
mj

i
〉 (17)

where the univariate inner products have simple closed-form expressions for each polynomial in the Askey scheme [14]
and are readily computed as part of the numerically-generated solution procedures described in Section 2.2. Thus, the
primary computational effort resides in evaluating the numerator, which is evaluated numerically using sampling,
quadrature, cubature, or sparse grid approaches (and this numerical approximation leads to use of the term “pseudo-
spectral” by some investigators).

4.1.1 Sampling

In the sampling approach, the integral evaluation is equivalent to computing the expectation (mean) of the response-
basis function product [the numerator in Eq. (16)] for each term in the expansion when sampling within the density
of the weighting function. This approach is only valid for PCE, and because sampling does not provide any partic-
ular monomial coverage guarantee, it is common to combine this coefficient estimation approach with a traditional
total-order chaos expansion. In computational practice, coefficient estimations based on sampling benefit from first
estimating the response mean (the first PCE coefficient) and then removing the mean from the expectation evaluations
for all subsequent coefficients.

4.1.2 Tensor Product Quadrature

In quadrature-based approaches, the simplest general technique for approximating multidimensional integrals, as in
Eq. (16), is to employ a tensor product of one-dimensional quadrature rules. Because there is little benefit to the use of
nested quadrature rules in the tensor-product case, we choose Gaussian abscissas [i.e., the zeros of polynomials that
are orthogonal with respect to a density function weighting (e.g., Gauss-Hermite, Gauss-Legendre, Gauss-Laguerre,
generalized Gauss-Laguerre, Gauss-Jacobi, or numerically generated Gauss rules)].

We first introduce an indexi ∈ N+, i ≥ 1. Then, for each value ofi, let {ξi
1, . . . , ξ

i
mi
} ⊂ Ωi be a sequence of

abscissas for quadrature onΩi. Forf ∈ C0(Ωi) andn = 1, we introduce a sequence of one-dimensional quadrature
operators

U i(f)(ξ) =
mi∑

j=1

f(ξi
j)wi

j (18)

with mi ∈ N given. When utilizing Gaussian quadrature, Eq. (18) integrates exactly all polynomials of degree less
than or equal to2mi − 1, for eachi = 1, . . . , n. Given an expansion orderp, the highest-order coefficient evaluations
[Eq. (16)] can be assumed to involve integrands of at least polynomial order2p (Ψ of orderp andR modeled to order
p) in each dimension such that a minimal Gaussian quadrature order ofp+1 will be required to obtain good accuracy
in these coefficients.

Now, in the multivariate casen > 1, for eachf ∈ C0(Ω) and the multi-indexi = (i1, . . . , in) ∈ Nn
+ we define

the full tensor product quadrature formulas

Qn
i f(ξ) =

(
U i1 ⊗ · · · ⊗U in

)
(f)(ξ) =

mi1∑

j1=1

· · ·
min∑

jn=1

f
(
ξi1

j1
, . . . , ξin

jn

) (
wi1

j1
⊗ · · · ⊗ win

jn

)
(19)

Clearly, the above product needs
∏n

j=1 mij function evaluations. Therefore, when the number of input random vari-
ables is small, full tensor-product quadrature is a very effective numerical tool. On the other hand, approximations
based on tensor-product grids suffer from thecurse of dimensionalitybecause the number of collocation points in a
tensor grid grows exponentially fast in the number of input random variables. For example, if Eq. (19) employs the
same order for all random dimensions,mij = m, then Eq. (19) requiresmn function evaluations.
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In [23], it is demonstrated that close synchronization of expansion form with the monomial resolution of a partic-
ular numerical integration technique can result in significant performance improvements. In particular, the traditional
approach of exploying a total-order PCE neglects a significant portion of the monomial coverage for a tensor-product
quadrature approach, and one should rather employ a tensor-product PCE [Eq. (12)] to provide improved synchro-
nization and more effective usage of the Gauss point evaluations. When the quadrature points are standard Gauss rules
(i.e., no Clenshaw-Curtis, Gauss-Patterson, or Genz-Keister nested rules), it has been shown that PCE and SC result
in identical polynomial forms [7], completely eliminating a performance gap that exists between total-order PCE and
SC [23].

4.1.3 Smolyak Sparse Grids

If the number of random variables is moderately large, then one should rather consider sparse tensor product spaces as
first proposed by Smolyak [2] and further investigated by [6, 24–27] that reduce dramatically the number of collocation
points, while preserving a high level of accuracy.

Here we follow the notation in [6] to describe the Smolyakisotropic formulasA (w, n), wherew is a level that
is not directly dependent on dimension.6 The Smolyak formulas are just linear combinations of the product formulas
in Eq. (19) with the following key property: only products with a relatively small number of points are used. With
U 0 = 0 and fori ≥ 1 define

∆i = U i −U i−1 (20)

and we set|i| = i1 + · · ·+ in. Then the isotropic Smolyak quadrature formula is given by

A (w, n) =
∑

|i|≤w+n

(
∆i1 ⊗ · · · ⊗∆in

)
(21)

Equivalently, formula Eq. (21) can be written as [28]

A (w, n) =
∑

w+1≤|i|≤w+n

(−1)w+n−|i|
(

n− 1
w + n− |i|

)
· (U i1 ⊗ · · · ⊗U in

)
(22)

For each index seti of levels, linear or nonlinear growth rules are used to define the corresponding one-dimensional
quadrature orders. The following growth rules are employed for indicesi ≥ 1:

Clenshaw–Curtis:m =
{

1 i = 1
2i−1 + 1 i > 1 (23)

Gauss–Patterson:m = 2i − 1 (24)

Gaussian:m = 2i− 1 (25)

where the nonlinear growth rules for Clenshaw-Curtis and Gauss-Patterson take full advantage of the point nesting in
these rules, and the linear growth rules for Gaussian quadrature take advantage of, at most, “weak” nesting (e.g., reuse
of the center point).

Examples of isotropic sparse grids, constructed from the fully nested Clenshaw-Curtis abscissas and the weakly
nested Gauss-Legendre abscissas are shown in Fig. 1, whereΩ = [−1, 1]2 and both Clenshaw-Curtis and Gauss-
Legendre employ nonlinear growth7 from Eqs. (23) and (24), respectively. There, we consider a two-dimensional
parameter space and a maximum levelw = 5 [sparse gridA (5, 2)]. To see the reduction in function evaluations with
respect to full tensor product grids, we also include a plot of the corresponding Clenshaw-Curtis isotropic full tensor
grid having the same maximum number of points in each direction, namely25 + 1 = 33.

6Other common formulations use a levelq, whereq ≥ n. We use w= q − n, where w≥ 0 for all n.
7We prefer linear growth for Gauss-Legendre, but employ nonlinear growth here for purposes of comparison.
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FIG. 1: Two-dimensional grid comparison to a tensor product grid using Clenshaw-Curtis points (left) and sparse
gridsA (5, 2) utilizing Clenshaw-Curtis (middle), and Gauss-Legendre (right) points with nonlinear growth

In [23], it is demonstrated that the synchronization of total-order PCE with the monomial resolution of a sparse
grid is imperfect, and that sparse grid SC consistently outperforms sparse grid PCE when employing the sparse grid
to directly evaluate the integrals in Eq. (16). In this paper, we depart from the use of sparse integration of total-order
expansions and instead employ a linear combination of tensor expansions [8]. That is, we compute separate tensor
polynomial chaos expansions for each of the underlying tensor quadrature grids (for which there is no synchronization
issue) and then sum them using the Smolyak combinatorial coefficient [from Eq. (22) in the isotropic case]. This
improves accuracy, preserves the PCE/SC consistency property described in Section 4.1.2, and also simplifies PCE
for the case of anisotropic sparse grids described next.

For anisotropic Smolyak sparse grids, a dimension preference vector is used to emphasize important stochastic
dimensions. Given a mechanism for defining anisotropy, we can extend the definition of the sparse grid from that
of Eq. (22) to weight the contributions of different index set components. First, the sparse grid index set constraint
becomes

wγ < i · γ ≤ wγ + |γ| (26)

whereγ is the minimum of the dimension weightsγk, k = 1 to n. The dimension weighting vectorγ amplifies the
contribution of a particular dimension index within the constraint and is therefore inversely related to the dimension
preference (higher weighting produces lower index set levels). For the isotropic case of allγk = 1, it is evident
that we reproduce the isotropic index constraintw + 1 ≤ |i| ≤ w + n (note the change from< to ≤). Second, the
combinatorial coefficient for adding the contribution from each of these index sets is modified as described in [29].

4.1.4 Cubature

Cubature rules [3, 30] are specifically optimized for multidimensional integration and are distinct from tensor-products
and sparse grids in that they are not based on combinations of one-dimensional Gauss quadrature rules. They have
the advantage of improved scalability to large numbers of random variables, but are restricted in integrand order and
require homogeneous random variable sets (achieved via transformation). For example, optimal rules for integrands
of 2, 3, and 5 and either Gaussian or uniform densities allow low-order polynomial chaos expansions (p = 1 or 2) that
are useful for global sensitivity analysis including main effects and, forp = 2, all two-way interactions.

4.1.5 Linear Regression

The linear regression approach uses a single linear least-squares solution of the form

Ψα = R (27)
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to solve for the complete set of PCE coefficientsα that best match a set of response valuesR. The set of response
values is obtained either by performing a design of computer experiments within the density function ofξ (point collo-
cation [4, 31]) or from a subset of tensor quadrature points with highest product weight (probabilistic collocation [5]).
In either case, each row of the matrixΨ contains theNt multivariate polynomial termsΨj evaluated at a particular
ξ sample. An oversampling is recommended in the case of random samples ([31] recommends2Nt samples), re-
sulting in a least-squares solution for the overdetermined system. As for sampling-based coefficient estimation, this
approach is only valid for PCE and does not require synchronization with monomial coverage; thus, it is common to
combine this coefficient estimation approach with a traditional total-order chaos expansion in order to keep sampling
requirements low. In this case, simulation requirements for this approach scale as[r(n + p)!]/n!p! (r is an oversam-
pling factor with typical values1 ≤ r ≤ 2), which can be significantly more affordable than isotropic tensor-product
quadrature [scales as(p + 1)n for standard Gauss rules] for larger problems. Finally, additional regression equations
can be obtained through the use of derivative information (gradients and Hessians) from each collocation point, which
can aid in scaling with respect to the number of random variables, particularly for adjoint-based derivative approaches.

5. DESIGN UNDER UNCERTAINTY USING STOCHASTIC EXPANSIONS

5.1 Stochastic Sensitivity Analysis

Stochastic expansion methods have a number of convenient analytic features that make them attractive for use within
analyses that extend beyond traditional probabilistic UQ, such as local and global sensitivity analysis (SA), mixed
aleatory/epistemic UQ, and design under uncertainty algorithms. First, moments of the response expansion are avail-
able analytically. Second, the response expansions are readily differentiated with respect to their expansion variables
(local SA), and terms may be reorganized to provide Sobol′ sensitivities from a variance-based decomposition [9, 32]
(global SA). Finally, response moment expressions may be differentiated with respect to auxilliary nonprobabilistic
variables, enabling gradient-based design under uncertainty (the subject of this paper) or gradient-based interval-
estimation for epistemic UQ [33]. For application to design under uncertainty, analytic moments and their design
sensitivities are described in Sections 5.1.1–5.1.4.

5.1.1 Analytic Moments

Mean and covariance of polynomial chaos expansions are available in simple closed form,

µi = 〈Ri〉 ∼=
P∑

k=0

αik〈Ψk(ξ)〉 = αi0 (28)

Σij = 〈(Ri − µi)(Rj − µj)〉 ∼=
P∑

k=1

P∑

l=1

αikαjl〈Ψk(ξ)Ψl(ξ)〉 =
P∑

k=1

αikαjk〈Ψ2
k〉 (29)

where the norm squared of each multivariate polynomial is computed from Eq. (17). These expressions provide exact
moments of the expansions, which converge under refinement to moments of the true response functions.

Similar expressions can be derived for stochastic collocation,

µi = 〈Ri〉 ∼=
Np∑

k=1

rik〈Lk(ξ)〉 =
Np∑

k=1

rikwk (30)

Σij = 〈RiRj〉 − µiµj
∼=

Np∑

k=1

Np∑

l=1

rikrjl〈Lk(ξ)Ll(ξ)〉 − µiµj =
Np∑

k=1

rikrjkwk − µiµj (31)

where we have simplified the expectation of Lagrange polynomials constructed at Gauss points and then integrated
at these same Gauss points. For tensor grids and sparse grids with fully nested rules, these expectations leave only
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the weight corresponding to the point for which the interpolation value is 1, such that the final equalities in Eqs. (30)
and (31) hold precisely. For sparse grids with non-nested rules, however, interpolation error exists at the collocation
points, such that these final equalities hold only approximately. In this case, we have the choice of computing the
moments based on sparse numerical integration or based on the moments of the (imperfect) sparse interpolant, where
small differences may exist prior to numerical convergence. In this paper, we employ the former approach; i.e., the
right-most expressions in Eqs. (30) and (31) are employed for all tensor and sparse cases irregardless of nesting.
Subsequent sensitivity derivations are also based on this choice.

5.1.2 Local Sensitivity Analysis: First-Order Probabilistic Expansions

With the introduction of nonprobabilistic variabless (for example, design variables or epistemic uncertain variables),
a polynomial chaos expansion only over the random variablesξ has the functional relationship

R(ξ, s) ∼=
P∑

k=0

αk(s)Ψk(ξ) (32)

For computing design sensitivities of response mean and variance, theij indices may be dropped from Eqs. (28)
and (29), simplifying to

µ(s) = α0(s), σ2(s) =
P∑

k=1

α2
k(s)〈Ψ2

k〉 (33)

Sensitivities of Eq. (33) with respect to the nonprobabilistic variables are as follows, where independence ofs andξ

is assumed:

dµ

ds
=

dα0

ds
=

〈
dR

ds

〉
(34)

dσ2

ds
=

P∑

k=1

〈Ψ2
k〉

dα2
k

ds
= 2

P∑

k=1

αk

〈
dR

ds
,Ψk

〉
(35)

where
dαk

ds
=
〈dR

ds , Ψk〉
〈Ψ2

k〉
(36)

has been used. Because of independence, the coefficients calculated in Eq. (36) may be interpreted as either the
derivatives of the expectations or the expectations of the derivatives, or more precisely, the nonprobabilistic sensi-
tivities of the chaos coefficients for the response expansion or the chaos coefficients of an expansion for the non-
probabilistic sensitivities of the response. The evaluation of integrals involvingdR/ds extends the data requirements
for the PCE approach to include response sensitivities at each of the sampled points for the quadrature, sparse grid,
sampling, or point collocation coefficient estimation approaches. The resulting expansions are valid only for a par-
ticular set of nonprobabilistic variables and must be recalculated each time the nonprobabilistic variables are modi-
fied.

Similarly for stochastic collocation,

R(ξ, s) ∼=
Np∑

k=1

rk(s)Lk(ξ) (37)

leads to

µ(s) =
Np∑

k=1

rk(s)wk, σ2(s) =
Np∑

k=1

r2
k(s)wk − µ2(s) (38)
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dµ

ds
=

Np∑

k=1

wk
drk

ds
(39)

dσ2

ds
=

Np∑

k=1

2wkrk
drk

ds
− 2µ

dµ

ds
=

Np∑

k=1

2wk(rk − µ)
drk

ds
(40)

5.1.3 Local Sensitivity Analysis: Zeroth-Order Combined Expansions

Alternatively, a stochastic expansion can be formed over bothξ ands. Assuming a bounded domainsL ≤ s ≤ sU

(with no implied probability content) for the nonprobabilistic variables, a Legendre chaos basis would be appropriate
for each of the dimensions ins within a polynomial chaos expansion,

R(ξ, s) ∼=
P∑

k=0

αkΨk(ξ, s) (41)

In this case, sensitivities for the mean and variance do not require response sensitivity data, but this comes at the
cost of forming the PCE over additional dimensions. For this combined variable expansion, the mean and variance
are evaluated by performing the expectations over only the probabilistic expansion variables, which eliminates the
polynomial dependence onξ, leaving behind the desired polynomial dependence of the moments ons,

µ(s) =
P∑

k=0

αk〈Ψk(ξ, s)〉ξ (42)

σ2(s) =
P∑

k=0

P∑

l=0

αkαl〈Ψk(ξ, s)Ψl(ξ, s)〉ξ − µ2(s) (43)

The remaining polynomials may then be differentiated with respect tos. In this approach, the combined PCE is
valid for the full nonprobabilistic variable range (sL ≤ s ≤ sU ) and does not need to be updated for each change in
nonprobabilistic variables, although adaptive localization techniques (i.e., trust region model management approaches)
can be employed when improved local accuracy of the sensitivities is required [34].

Similarly for stochastic collocation,

R(ξ, s) ∼=
Np∑

k=1

rkLk(ξ, s) (44)

leads to

µ(s) =
Np∑

k=1

rk〈Lk(ξ, s)〉ξ (45)

σ2(s) =
Np∑

k=1

Np∑

l=1

rkrl〈Lk(ξ, s)Ll(ξ, s)〉ξ − µ2(s) (46)

where the remaining polynomials not eliminated by the expectation overξ are again differentiated with respect tos.

5.1.4 Inputs and Outputs

There are two types of nonprobabilistic variables for which sensitivities must be calculated: “augmented,” where the
nonprobabilistic variables are separate from and augment the probabilistic variables, and “inserted,” where the non-
probabilistic variables define distribution parameters for the probabilistic variables. Any inserted nonprobabilistic vari-
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able sensitivities must be handled using Eqs. (34), (35), (39) and (40), wheredR/ds is calculated as(dR/dx)(dx/ds)
anddx/ds is the Jacobian of the variable transformationx = T−1(ξ) with respect to the inserted nonprobabilistic
variables. In addition, parameterized polynomials (generalized Gauss-Laguerre, Jacobi, and numerically generated
polynomials) may introduce adΨ/ds or dL/ds dependence for inserteds that will introduce additional terms in the
sensitivity expressions.

Although moment sensitivities directly enable robust design optimization and interval estimation formulations that
seek to control or bound response variance, control or bounding of reliability requires sensitivities of tail statistics.
In this work, the sensitivity of simple moment-based approximations [10] to CDF and complementary cumulative
distribution function (CCDF) mappings are employed for this purpose,

z̄ → β : βCDF =
µ− z̄

σ
, βCCDF =

z̄ − µ

σ
(47)

β̄ → z : z = µ− σβ̄CDF, z = µ + σβ̄CCDF (48)

such that it is straightforward to form approximate design sensitivities of reliability indexβ (forward reliability map-
ping z̄ → β) or response levelz (inverse reliability mappinḡβ → z) from the moment design sensitivities and the
specified levels̄β or z̄. Extending beyond these simple approaches to support probability and generalized reliability
metrics is a subject of current work [35].

5.2 Optimization Formulations

Given the capability to compute analytic statistics of the response along with design sensitivities of these statistics,
bilevel, sequential, and multifidelity approaches for design under uncertainty are pursued, with application to common
formulations for reliability-based design and robust design. The bilevel approach directly optimizes statistical results
from uncertainty analyses, whereas the sequential and multifidelity approaches seek to reduce the expense resulting
from nested iteration by applying surrogate modeling indirections (data fits and multifidelity modeling) to the uncer-
tainty analysis results. These indirections then require the application of trust region model management to manage
the use of surrogates within the sequential and multifidelity optimization processes. In the sections to follow, we will
simplify the semantics and refer to the first-order probabilistic expansions of Section 5.1.2 as “uncertain expansions”
and the zeroth-order combined expansions of Section 5.1.3 as “combined expansions.”

5.2.1 Bilevel

The simplest and most direct approach is to employ the analytic statistics and design derivatives from Section 5.1
directly within an optimization loop. This is known as a bilevel approach, because there is an inner-level uncertainty
analysis nested within an outer-level optimization.

Consider the common reliability-based design example of a deterministic objective functionf (e.g., weight, cost)
with a constraint on the reliability indexβ,

minimize f

subject to β ≥ β̄ (49)

whereβ is computed relative to a prescribed threshold response valuez̄ (e.g., a failure threshold), is constrained by
a prescribed reliability level̄β (minimum allowable reliability in the design), and is either a CDF or CCDF index,
depending on the definition of the failure domain [i.e., defined from whether the associated failure probability is
cumulative,p(g ≤ z̄), or complementary cumulative,p(g > z̄)].

Another common example is robust design in which the constraint enforcing a reliability lower-bound has been
replaced with a constraint enforcing a variance upper boundσ̄2 (maximum allowable variance in the design):

minimize f

subject to σ2 ≤ σ̄2 (50)
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Solving these problems using a bilevel approach involves computingβ anddβ/ds for Eq. (49) orσ2 anddσ2/ds
for Eq. (50) for each set of design variabless passed from the optimizer. This approach is explored for both uncertain
and combined expansions using PCE and SC.

5.2.2 Sequential

An alternative design under uncertainty approach is the sequential approach, in which additional efficiency is sought
through breaking the nested relationship of the UQ and optimization loops. The general concept is to iterate between
optimization and uncertainty quantification, updating the optimization goals based on the most recent uncertainty as-
sessment results. This approach is common within the reliability methods community, for which the updating strategy
may be based on safety factors [36] or other approximations [37].

A particularly effective approach for updating the optimization goals is to use data-fit surrogate models, and in
particular, local Taylor series models allow direct insertion of stochastic sensitivity analysis capabilities. Using local
reliability methods, first-order Taylor series approximations were explored in [10] and second-order Taylor series
approximations were investigated in [11]. In both cases, a trust-region model management framework [34] is used to
adaptively manage the extent of the approximations and ensure convergence of the optimization process. Surrogate
models are used for both the objective and the constraint functions, although the use of surrogates is only required for
the functions containing statistical results; deterministic functions may remain explicit if desired.

In particular, trust-region surrogate-based optimization for reliability-based design employs surrogate models of
f andβ within a trust region∆k centered atsc,

minimize f(sc) +∇sf(sc)T (s− sc)
subject to β(sc) +∇sβ(sc)T (s− sc) ≥ β̄ (51)

‖ s− sc ‖∞ ≤ ∆k

and trust-region surrogate-based optimization for robust design employs surrogate models off andσ2 within a trust
region∆k centered atsc,

minimize f(sc) +∇sf(sc)T (s− sc)
subject to σ2(sc) +∇sσ

2(sc)T (s− sc) ≤ σ̄2 (52)

‖ s− sc ‖∞ ≤ ∆k

Second-order local surrogates may also be employed, in which case, the objectives for Eqs. (51) and (52) become

f(sc) +∇sf(sc)T (s− sc) +
1
2
(s− sc)T∇2

sf(sc)(s− sc) (53)

and the constraints become

β(sc) +∇sβ(sc)T (s− sc) +
1
2
(s− sc)T∇2

sβ(sc)(s− sc) ≥ β̄ (54)

σ2(sc) +∇sσ
2(sc)T (s− sc) +

1
2
(s− sc)T∇2

sσ
2(sc)(s− sc) ≤ σ̄2 (55)

The Hessians∇2
sf ,∇2

sβ, and∇2
sσ

2 are typically approximated from an accumulation of curvature information using
quasi-Newton updates, such as Broyden-Fletcher-Goldfarb-Shanno (BFGS) or symmetric rank one (SR1) [38]. The
sequential approach will be explored for uncertain expansions using PCE and SC.

5.2.3 Multifidelity

The multifidelity design under uncertainty approach is another trust-region surrogate-based approach. Instead of the
surrogate UQ model being a simple data fit (in particular, a first-/second-order Taylor series model) of the truth UQ
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model results, distinct UQ models of differing fidelity are now employed. This differing UQ fidelity could stem from
the fidelity of the underlying simulation model, the fidelity of the UQ algorithm, or both. In this paper, the focus
is placed on the fidelity of the UQ algorithm. For reliability-based multifidelity methods, this could entail varying
fidelity in approximating assumptions [e.g., mean-value first-order second-moment (MVFOSM) [10] for low fidelity,
or second-order reliability method (SORM) [11] for high fidelity], and for stochastic expansion-based multifidelity
methods, it could involve differences in selected levels ofp andh refinement.

In this paper, UQ fidelity is defined to be pointwise accuracy in the design space and the high-fidelity truth model
is taken to be the uncertain expansion PCE/SC model, with validity only at a single design point. The low-fidelity
model, whose validity over the design space will be adaptively controlled, will be either the combined expansion
PCE/SC model, with validity over a range of design parameters, or the MVFOSM reliability method, with validity
only at a single design point. The combined expansion low-fidelity approach will span the current trust region of
the design space and will be reconstructed for each new trust region. Trust region adaptation will ensure that the
combined expansion approach remains sufficiently accurate for design purposes. By taking advantage of the design
space spanning, one can eliminate the cost of multiple low-fidelity UQ analyses within the trust region, with fallback
to the greater accuracy and higher expense of the uncertain expansion approach when needed. The MVFOSM low-
fidelity approximation must be reformed for each change in design variables, but it only requires a single evaluation
of a response function and its derivative to approximate the response mean and variance from the input mean and
covariance,

µg = g(µx) (56)

σ2
g =

n∑

i=1

n∑

j=1

Cov(i, j)
dg

dxi
(µx)

dg

dxj
(µx) (57)

from which forward/inverse CDF/CCDF reliability mappings can be generated using Eqs. (47) and (48). This is the
least expensive UQ option, but its limited accuracy8 may dictate the use of small trust regions, resulting in greater
iterations to convergence. The expense of optimizing a combined expansion, on the other hand, is not significantly
less than that of optimizing the high-fidelity UQ model, but its representation of global trends should allow the use
of larger trust regions, resulting in reduced iterations to convergence. The design derivatives of each of the PCE/SC
expansion models provide the necessary data to correct the low-fidelity model to first-order consistency with the high-
fidelity model at the center of each trust region, ensuring convergence of the multifidelity optimization process to
the high-fidelity optimum. Design derivatives of the MVFOSM statistics are currently evaluated numerically using
forward finite differences.

Multifidelity optimization for reliability-based design can be formulated as

minimize f(s)

subject to β̂hi(s) ≥ β̄ (58)

‖ s− sc ‖∞ ≤ ∆k

and multifidelity optimization for robust design can be formulated as

minimize f(s)

subject to σ̂hi
2(s) ≤ σ̄2 (59)

‖ s− sc ‖∞ ≤ ∆k

where the deterministic objective function is not approximated andβ̂hi andσ̂hi
2 are the approximated high-fidelity

UQ results resulting from correction of the low-fidelity UQ results. In the case of an additive correction function,

8MVFOSM is exact for linear functions with Gaussian inputs, but quickly degrades for nonlinear and/or non-Gaussian.
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β̂hi(s) = βlo(s) + δβ(s) (60)

σ̂hi
2(s) = σ2

lo(s) + δσ2(s) (61)

where correction functionsδ(s) enforcing first-order consistency [39] will be explored. Quasi-second-order correction
functions [39] can also be explored, but care must be taken due to the different rates of curvature accumulation between
the low- and high-fidelity models. In particular, because the low-fidelity model is evaluated more frequently than
the high-fidelity model, it accumulates curvature information more quickly, such that enforcing quasi-second-order
consistency with the high-fidelity model can be detrimental in the initial iterations of the algorithm.9 Instead, this
consistency should only be enforced when sufficient high-fidelity curvature information has been accumulated (e.g.,
aftern rank one updates).

6. COMPUTATIONAL RESULTS

Stochastic expansion, stochastic sensitivity analysis, and design under uncertainty capabilities have been implemented
in DAKOTA [40], an open-source software framework for design and performance analysis of computational mod-
els on high-performance computers. This section presents computational results on the performance of design under
uncertainty methods for several algebraic test problems, extending previous results presented in [41]. Algorithmic
variations of interest include bilevel, sequential, or multifidelity optimization formulations; PCE or SC expansions;
combined or uncertain expansion variables with associated stochastic sensitivity analysis; and tensor, sparse, or re-
gression approaches to expansion calculation.

6.1 Rosenbrock

The two-dimensional Rosenbrock function is a popular test problem for gradient-based optimization algorithms due
to its difficulty for first-order methods. It turns out that this is also a challenging problem for certain UQ methods
(especially local reliability methods), because a particular response level contour involves a highly nonlinear curve
that may encircle the mean point (leading to multiple most probable points of failure in local reliability methods). The
function is a fourth-order polynomial of the form,

f(x1, x2) = 100(x2 − x2
1)

2 + (1− x1)2 (62)

A three-dimensional plot of this function is shown in Fig. 2a, where bothx1 andx2 range in value from –2 to
2. Figure 2b shows a contour plot where the encircling of a mean value at (0,0) is evident. Variablesx1 andx2 are
modeled as independent random variables using uniform and normal probability distributions, respectively. A linear
variable transformation is used to account for scaling and Legendre and Hermite orthogonal polynomials (along with
linear growth Gauss-Legendre and Gauss-Hermite integration rules) are employed in the transformed space. Although
usage of nested Gauss-Patterson rules forx1 could be advantageous in the case of sparse grids, Gauss-Legendre rules
are used for greater consistency of results.

6.1.1 Design under Uncertainty

Because exact results can be readily obtained for Rosenbrock using low-order stochastic expansions, a simple design
under uncertainty formulation is used to provide verification for both stochastic sensitivity formulations. Takingx1

to be a design variable with initial value –0.75 and bounds−2 ≤ x1 ≤ 2 and takingx2 to be a standard normal
random variable (µ = 0, σ = 1), Table 2 shows the computational results for maximizingβCDF for z̄ = 10 [see
Eq. (47)] with either tensor-product quadrature (TPQ) orders or Smolyak sparse grid (SSG) levels as shown, where
the levels have been selected to be the minimum required to exactly resolve the fourth-order polynomial. Within
Table 2, the presence of “/” separates PCE-based and SC-based results when aggregated, “{,}” separates low- and
high-fidelity settings when applicable, and “(,)” separates function and gradient evaluation counts. The combined

9Analytic and numerical Hessians, when available, are instantaneous with no accumulation rate concerns.
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(a) 3-D plot.
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(b) Contour plot.

FIG. 2: Rosenbrock’s function

TABLE 2: PCE-based and SC-based design results, Rosenbrock test problem

Design Expansion Integration Evaluations
approach variables approach (Fn, Grad)βCDF

PCE/SC Bilevel Uncertain TPQm = 5 (15, 15) 2.0913
PCE/SC Bilevel Combined TPQm = 5 (25, 0) 2.0913

PCE/SC Sequential 1 Uncertain TPQm = 5 (15, 10) 2.0913
PCE/SC Sequential Q2 Uncertain TPQm = 5 (15, 10) 2.0913

PCE/SC{Comb, Unc} Multifidelity 1 {Comb, Unc} TPQm = 5 (40, 10) 2.0913
PCE/SC{MV, Unc} Multifidelity 1 Uncertain TPQm = 5 (20, 16) 2.0913

PCE/SC Bilevel Uncertain SSG w = 1 (9, 9) 2.0913
PCE/SC Bilevel Combined SSG w = 2 (17, 0) 2.0913

PCE/SC Sequential 1 Uncertain SSG w = 1 (9, 6) 2.0913
PCE/SC Sequential Q2 Uncertain SSG w = 1 (9, 6) 2.0913

PCE/SC{Comb, Unc} Multifidelity 1 {Comb, Unc} SSG{w = 2, w = 1} (26, 6) 2.0913
PCE/SC{MV, Unc} Multifidelity 1 Uncertain SSG w = 1 (14, 12) 2.0913

expansion approaches form a single two-dimensional expansion (formed once total for bilevel and once per trust
region for multifidelity) from function values for which both moment and moment sensitivity evaluations for all
design variable values involve only postprocessing of the expansion, whereas the uncertain expansion approaches
form a new one-dimensional expansion from function values and gradients for each new set of design variable values.
Sequential results are shown for first-order and quasi-second-order Taylor series approximations (Section 5.2.2), and
multifidelity results are shown for first-order additive corrections [Eq. (60)]. Quasi-second-order formulations employ
SR1 updates. For each of the multifidelity approaches, the high-fidelity UQ model is the uncertain expansion approach,
using the same settings as in its corresponding bilevel approach. The low-fidelity UQ model is either the combined
expansion approach, again using the same settings as in its corresponding bilevel approach, or a MVFOSM UQ
analysis. Each of the analytic stochastic sensitivity approaches has been verified against finite difference results, and
all but the MVFOSM analyses employ these analytic sensitivities. NPSOL’s sequential quadratic programming (SQP)
method [42] is used as the optimizer, with a consistent convergence tolerance of10−6.

For this problem, the functional input/output relationship is captured exactly and all techniques are equally suc-
cessful in locating the optimum at the lower bound ofx1. There are no differences of interest between PCE-based
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and SC-based results for this problem; thus, these results are all aggregated. Despite the low dimension, the SSG
approaches are already slightly less expensive than comparable TPQ approaches. The sequential and multifidelity
approaches require only a single trust-region iteration to achieve hard convergence (Karush-Kuhn-Tucker optimality
conditions satisfied), such that inclusion of quasi-second-order approximations (which require at least two iterations
to accumulate curvature information) provide no benefit. Because this simple problem converges so quickly, the addi-
tional overhead of the more complex sequential and multifidelity optimization approaches has little chance to provide
dividends. Overall, the sequential approaches employing SSG are the most efficient techniques for this problem (high-
lighted in blue), followed closely by the bilevel uncertain expansion approaches employing SSG (highlighted in red),
although the primary benefit of this test problem is verification; the more challenging test problems to follow will
provide greater insight on accuracy and efficiency.

6.2 Short Column

This test problem involves the plastic analysis of a short column with rectangular cross section (widthb and depth
h) having uncertain material properties (yield stressY ) and subject to uncertain loads (bending momentM and axial
forceP ) [43]. The limit state function is defined as

g(x) = 1− 4M

bh2Y
− P 2

b2h2Y 2
(63)

The distributions forP , M , andY areN (500, 100),N (2000, 400), and Lognormal with (µ, σ) = (5, 0.5), respectively,
with a correlation coefficient of 0.5 betweenP andM (uncorrelated otherwise). ForP andM , a linear variable
transformation is applied and, forY , a nonlinear variable transformation is applied. In both cases, Hermite orthogonal
polynomials and linear growth Gauss-Hermite integration rules are employed in the transformed standard normal
space. Whenb andh are included in combined expansions, linear scaling, Legendre polynomials, and linear growth
Gauss-Legendre integration rules are employed.

6.2.1 Design under Uncertainty

An objective function of cross-sectional area and a target reliability index of 2.5 (approximated from moments) are
used in the design problem,

min bh

s.t. βCDF ≥ 2.5
5. ≤ b ≤ 15.

15. ≤ h ≤ 25. (64)

The initial design of(b, h) = (5, 15) is infeasible and the optimization must add material to obtain the target reliability
at the optimal design(b, h) = (8.1147, 25.000) with an area of202.87.

In order to explore scaling for a slightly higher dimensional problem, the PCE-based design studies augment TPQ
and SSG approaches with linear regression (“point collocation”) using a factor of 2 oversampling (20 simulations
for each second-order uncertain expansion over three variables, and 112 simulations for each third-order combined
expansion over five variables). Other settings are the same as those described in Section 6.1.1: NPSOL SQP is the
optimizer, SR1 updates are used for quasi-second-order approximations in sequential approaches, and multifidelity
approaches employ uncertain expansions as the high-fidelity models and either combined expansions or MVFOSM as
the low-fidelity models (with settings mirroring the corresponding bilevel settings). Table 3 shows the computational
results, where “/”, “{,}”, and “(,)” indicate the separations described previously. For this problem, the functional in-
put/output relationship is not captured exactly and performance differences are more readily evident. For the combined
expansion results (highlighted in red), computational expense is competitive (the PCE Bilevel/Combined/Pt Colloc
approach reports the lowest expense among all approaches), but these optima are not as accurate as those computed by
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TABLE 3: PCE- and SC-based design results, short column test problem

Design Expansion Integration Evaluations
approach variables approach (Fn, Grad) Area βCDF

PCE Bilevel Uncertain Pt Collocp = 2 (300, 300) 202.38 2.5001
PCE Bilevel Combined Pt Collocp = 3 (112, 0) 206.12 2.5000

PCE Sequential 1 Uncertain Pt Collocp = 2 (240, 120) 202.39 2.5000
PCE Sequential Q2 Uncertain Pt Collocp = 2 (220, 120) 202.39 2.5000

PCE{Comb, Unc} Multifidelity 1 {Comb, Unc} Pt Colloc{p = 3,p = 2} (576, 120) 202.39 2.5000
PCE{MV, Unc} Multifidelity 1 Uncertain Pt Collocp = 2 (204, 144) 202.39 2.5000

PCE/SC Bilevel Uncertain TPQm = 3 (405, 405) 202.86 2.5001
PCE/SC Bilevel Combined TPQm = 4 (1024, 0) 202.61 2.5000

PCE/SC Sequential 1 Uncertain TPQm = 3 (324, 162) 202.86 2.5000
PCE/SC Sequential Q2 Uncertain TPQm = 3 (297, 162) 202.86 2.5000

PCE/SC{Comb, Unc} Multifidelity 1 {Comb, Unc} TPQ{m = 4,m = 3} (3288, 108) 202.86 2.5000
PCE/SC{MV, Unc} Multifidelity 1 Uncertain TPQm = 3 (253, 172) 202.86 2.5000

PCE/SC Bilevel Uncertain SSG w = 2 (465, 465) 202.87 2.5001
PCE/SC Bilevel Combined SSG w = 3 (341, 0) 201.67/199.462.5000

PCE/SC Sequential 1 Uncertain SSG w = 2 (372, 186) 202.86 2.5000
PCE/SC Sequential Q2 Uncertain SSG w = 2 (341, 186) 202.86 2.5000

PCE/SC{Comb, Unc} Multifidelity 1 {Comb, Unc} SSG{w = 3, w = 2} (992/1333, 155) 202.86 2.5000
PCE/SC{MV, Unc} Multifidelity 1 Uncertain SSG w = 2 (281, 188) 202.86 2.5000

the corresponding uncertain expansion approaches (highlighted in green). Under order/level refinement (not shown),
the optima from the bilevel combined expansion approaches converge to the optima from the uncertain expansion
approaches; however, it is expensive: PCE and SC combined expansions require SSG level = 5 at a cost of 4575 eval-
uations to achieve accuracy comparable to the uncertain expansion results. Another trend that can be identified is that
the TPQ and SSG approaches outperform the regression approach in terms of accuracy, due both to the advantages
of tensor and sparse expansions over total-order expansions and to the accuracy of explicit numerical integration over
implicit least squares. Because the sequential approaches take more than a single iteration to converge, benefit from
quasi-second-order approximations (highlighted in blue) is evident: accumulated curvature information converges the
sequential iteration more quickly. In addition, the multifidelity machinery converges to the high-fidelity uncertain ex-
pansion results despite the optimizer being interfaced only with the low-fidelity combined expansion or MVFOSM
UQ analyses. Among the approaches that converge with sufficient accuracy, MVFOSM-based multifidelity approaches
(highlighted in magenta) provide the most efficient techniques for this problem, followed by the quasi-second-order
sequential approaches (highlighted in blue), followed by the bilevel uncertain expansion approaches (highlighted in
green).

6.2.2 Convergence Rates for Combined Expansions

To investigate the issue of the degraded convergence rates for combined expansions, Fig. 3 shows a comparison
of convergence rates forL2 versusL∞ metrics for the short column problem, where all five variables are used in
combined expansions and the metrics only reflect differences in expansion postprocessing goals. TheL∞ metrics are
maximum values forβCDF from applying NPSOL to only this metric (neglecting cross-sectional area) over the range
of the design variables, whereβCDF is determined from integrating over the three uncertain variables as in Eqs. (42),
(43), (45), and (46). ForL2 metrics, all five variables are treated as uncertain (b andh are treated as uniform random
variables within their ranges) and convergence in the resultingβCDF value [determined from integrating over all five
variables as in Eqs. (28)–(31)] is shown. All errors are computed relative to overkill solutions resulting from high-
level grid refinements. It is evident that convergence rates for bothL2 cases are more rapid than theL∞ maxima, with
approximately four orders-of-magnitude reduction in residuals forL∞ compared to approximately nine orders-of-
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FIG. 3: Convergence rates for combined expansions in the short column test problem

magnitude reduction in residuals forL2, despite the fact that both sets of metrics are computed from postprocessing
of the same combined expansions. Thus, it can be inferred that it is not just the higher nonlinearity inb andh that
slows the combined approaches; rather, the requirement of extrema is also a contributing factor. In particular, the
pointwise accuracy required forL∞ is more demanding than the integrated convergence required forL2, leading to
the observation that distinguishing stochastic dimensions undergoing integration from those undergoing optimization
can be important.

6.3 Cantilever Beam

The next test problem involves the simple uniform cantilever beam [36, 44] shown in Fig. 4. Random variables in the
problem include the yield stressR and Youngs modulusE of the beam material and the horizontal and vertical loads,
X and Y , which are modeled with independent normal distributions usingN (40000, 2000), N (2.9E7, 1.45E6),
N (500, 100), andN (1000, 100), respectively. Problem constants includeL = 100 in. andD0 = 2.2535 in. The beam
response metrics have the following analytic form for stressS and displacementD:

S =
600
wt2

Y +
600
w2t

X ≤ R (65)

L = 100”

w

t
X

Y

FIG. 4: Cantilever beam test problem
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D =
4L3

Ewt

√(
Y

t2

)2

+
(

X

w2

)2

≤ D0 (66)

where they are placed in standard form using

gS = S −R ≤ 0 (67)

gD = D −D0 ≤ 0 (68)

such that negativeg values indicate safe regions of the parameter space. For polynomial approximation ofgS and
gD, a linear variable transformation is used and Hermite orthogonal polynomials and linear growth Gauss-Hermite
integration rules are employed in the transformed standard normal space. Whenw andt are included in combined
expansions, linear scaling, Legendre polynomials, and linear growth Gauss-Legendre integration rules are employed
for these variables. It is worth noting that: (i)gS is linear andgD is only mildly nonlinear in the uncertain variables,
but both are highly nonlinear in the design variablesw andt; and (ii)gD contains a singularity due to the infinite tails
of E and therefore does not have finite variance; however, this occurs at 20 standard deviations and, given that Youngs
modulus cannot physically be negative, its presence is not of practical or numerical interest.

6.3.1 Design under Uncertainty

The design problem is to minimize the weight (or, equivalently, the cross-sectional area) of the beam subject to the
displacement and stress constraints. When seeking three-sigma reliability levels on these constraints [reliability indices
are CCDF in orientation and are approximated from moments as in Eq. (47)], the design problem can be summarized
as follows:

min wt

s.t. βCCDFS ≥ 3.

βCCDFD
≥ 3.

1. ≤ w ≤ 4.

1. ≤ t ≤ 4. (69)

For SC, results are presented for TPQ and SSG, and for PCE, results are shown for TPQ, SSG, and point colloca-
tion with a factor of two oversampling (30 simulations for each second-order uncertain expansion over four vari-
ables and 420 simulations for each fourth-order combined expansion over six variables). Again, NPSOL SQP is the
optimizer, SR1 updates enable quasi-second-order approximations in sequential approaches, and multifidelity ap-
proaches employ uncertain expansions as the high-fidelity models and either combined expansions or MVFOSM
as the low-fidelity models (with settings mirroring the corresponding bilevel settings). Table 4 shows the computa-
tional results starting from infeasible initial guess(w, t) = (2.5, 2.5), where the fully converged optimal solution is
(w, t) = (2.4460, 3.8922) with area= 9.5202, βCCDFS

= 3.0000, andβCCDFD
= 3.2770. For this problem, the

relationship of stress and displacement with respect to the uncertain variables is captured accurately enough by low-
order uncertain expansions (Pt Collocp = 2, TPQm = 3, and SSG w = 2) to converge to the correct solution. The
accuracy of the combined expansion results, however, is poor even using higher order expansions (highlighted in red).
Each of the first-order sequential approaches also fail to converge accurately, whereas accumulation of curvature infor-
mation in the quasi-second-order sequential approaches (highlighted in blue) mitigates this problem in each of these
cases. The multifidelity approaches are successful in forcing the low-fidelity results toward the high-fidelity optima,
with more accurate results obtained using MVFOSM as the low-fidelity model than for using the poorly converged
combined expansions. Overall, the MVFOSM-based multifidelity approaches (highlighted in magenta) provide the
most efficient techniques for this problem, followed by the bilevel uncertain expansion approaches (highlighted in
green), followed by the quasi-second-order sequential approaches (highlighted in blue).

International Journal for Uncertainty Quantification



Design Under Uncertainty Employing Stochastic Expansion Methods 141

TABLE 4: PCE- and SC-based design results, cantilever beam test problem
Design Expansion Integration Evaluations

approach variables approach (Fn, Grad) Area βCCDFS
βCCDFD

PCE Bilevel Uncertain Pt Collocp = 2 (330, 330) 9.5202 3.0000 3.2639

PCE Bilevel Combined Pt Collocp = 4 (420, 0) 17.230 3.1728 1.0435

PCE Sequential 1 Uncertain Pt Collocp = 2 (300, 150) 9.2802 2.6127 2.3473

PCE Sequential Q2 Uncertain Pt Collocp = 2 (570, 300) 9.5202 3.0000 3.2637

PCE{Comb, Unc}Multifidelity 1 {Comb, Unc} Pt Colloc{p=4,p=2} (1890, 90) 9.2586 2.5110 3.3574

PCE{MV, Unc} Multifidelity 1 Uncertain Pt Collocp = 2 (225, 165) 9.5202 3.0000 3.2639

PCE/SC Bilevel Uncertain TPQm = 3 (891, 891) 9.5202 3.0000 3.2770

PCE/SC Bilevel Combined TPQm = 3 (729, 0) 6.5432 6.8168 3.0000

PCE/SC Sequential 1 Uncertain TPQm = 3 (810, 405) 9.2656 2.5877 2.2745

PCE/SC Sequential Q2 Uncertain TPQm = 3 (1458, 729) 9.5202 3.0000 3.2770

PCE/SC{Comb, Unc} Multifidelity 1 {Comb, Unc} TPQm = 3 (4374, 324) 9.2458 2.5164 3.2623

PCE/SC{MV, Unc} Multifidelity 1 Uncertain TPQm = 3 (478, 318) 9.5202 3.0000 3.2770

PCE/SC Bilevel Uncertain SSG w = 2 (539, 539) 9.5202 3.0000 3.2770

PCE/SC Bilevel Combined SSG w = 4 (2381, 0) 9.1988/9.0785 3.0000 5.3265/6.0161

PCE/SC Sequential 1 Uncertain SSG w = 2 (490, 245) 9.2658 2.5882/2.5883 2.2765/2.2766

PCE/SC Sequential Q2 Uncertain SSG w = 2 (882, 441) 9.5202 3.0000 3.2769

PCE/SC{Comb, Unc}Multifidelity1 {Comb, Unc} SSG{w = 4, w = 2} (10063/12346,294/196) 9.5202/9.5250 3.0000/3.0053 3.2768/3.5034

PCE/SC{MV, Unc}Multifidelity 1 Uncertain SSG w = 2 (318, 222) 9.5202 3.0000 3.2770

6.3.2 Convergence Rates for Combined Expansions

The convergence rates for PCE/SC combined expansions have been severely degraded in this problem. To again ex-
plore relative convergence behavior forL2 versusL∞ metrics computed from combined expansions, high-order sparse
grids are needed. By observing that the stress and displacement metrics have much greater nonlinearity with respect to
the design variables than with respect to the uncertain variables, anisotropy in these metrics can be exploited. In partic-
ular, an anisotropic SSG [see Eq. (26)] is used with dimension preference of{4, 4, 1, 1, 1, 1} for {w, t, R,E,X, Y },
allowing the exploration of SSG levels up to w = 24 in six dimensions. Figure 5 shows the convergence behavior
for stress reliability metrics, where theL∞ metrics are theβCCDFS maxima (neglecting cross-sectional area and
βCCDFD ) from applying NPSOL over the range of the design variables [β computed from integrating over the four
uncertain variables as in Eqs. (42), (43), (45), and (46)], and theL2 metrics areβCCDFS

values from treating all six
variables as uncertain [w andt treated as uniform random variables within their ranges, andβ computed from integrat-
ing over all six variables as in Eqs. (28)–(31)]. All errors are again computed relative to overkill reference solutions.
Similar to Fig. 3, significant differences in convergence rates are evident despite the use of the same combined expan-
sions in the metric post-processing. Convergence rates for theL2 statistics are more rapid than theL∞ maxima, with
approximately nine orders of magnitude reduction in residuals forL2 (prior to saturation) compared to approximately
four orders of magnitude reduction in residuals forL∞ over the same span. From this, it can again be inferred thatL∞

metrics are more computationally demanding thanL2 metrics, and the poor convergence of the combined expansions
in this problem results from more than the higher degrees of nonlinearity in the design dimensions.

6.4 Steel Column

The final algebraic test problem involves the trade-off between cost and reliability for a steel column [43]. The cost is
defined as

Cost= bd + 5h (70)

whereb, d, andh are the means of the flange breadth, flange thickness, and profile height, respectively. This prob-
lem demonstrates scaling to larger dimensional UQ problems as well as design variable insertion. Nine uncorrelated
random variables are used in the problem to define the yield stressFs (lognormal withµ/σ = 400/35 MPa), dead
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FIG. 5: Convergence rates for combined expansions in the cantilever stress test function

weight loadP1 (normal withµ/σ = 500,000/50,000 N), variable loadP2 (gumbel withµ/σ = 600,000/90,000 N),
variable loadP3 (gumbel withµ/σ = 600,000/90,000 N), flange breadthB (lognormal withµ/σ = b/3 mm), flange
thicknessD (lognormal withµ/σ = d/2 mm), profile heightH (lognormal withµ/σ = h/5 mm), initial deflectionF0

(normal withµ/σ = 30/10 mm), and Youngs modulusE (Weibull with µ/σ = 21,000/4200 MPa). The limit state has
the following analytic form:

g = Fs − P

(
1

2BD
+

F0

BDH

Eb

Eb − P

)
(71)

where

P = P1 + P2 + P3 (72)

Eb =
π2EBDH2

2L2
(73)

and the column lengthL is 7500 mm. ForP1 andF0, a linear variable transformation is applied and, for the other
seven random variables, a nonlinear variable transformation is applied; in all cases, Hermite orthogonal polynomials
and linear growth Gauss-Hermite integration rules are employed in the transformed standard normal space.

As shown in [15], this problem has a singularity in the limit state out in the (heavy) tails of the input distributions
due to subtractive cancellation in the denominator of Eq. (71). Unlike the singularity described in Section 6.3, this
singularity is of numerical importance as variance will quickly diverge under expansion order refinement. Therefore,
UQ convergence studies on moments or moment-based reliability indices are not meaningful as no reference solution
exists. However, for a fixed resolution in the stochastic expansions, convergence of the design under uncertainty
process is still meaningful.

6.4.1 Design under Uncertainty

This design problem demonstrates design variable insertion into random variable distribution parameters through
the design of the mean flange breadth, flange thickness, and profile height. Because there are no augmented design
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variables in this problem, there is no combined expansion option and the number of potential formulations is reduced.
The following design formulation maximizes the reliability subject to a cost constraint:

max βCDF

s.t. Cost≤ 4000.

200. ≤ b ≤ 400.

10. ≤ d ≤ 30.

100. ≤ h ≤ 500. (74)

For this larger dimensional problem, the TPQ approach is not viable and results are reported for SC using SSG
and for PCE using either SSG or point collocation with an oversampling ratio of 2. As for each of the previous test
problems, NPSOL SQP is the optimizer, sequential approaches with quasi-second-order approximations employ SR1
updates, and multifidelity approaches employ uncertain expansions as the high-fidelity models (mirroring the corre-
sponding bilevel settings). However, only the MVFOSM option is available for use as the low-fidelity UQ model.
Table 5 shows the computational results. For this problem, all approaches converge accurately to the optimal de-
sign point at(b, d, h) = (200., 17.5, 100.). Differences in the optimumβCDF value are evident between the point
collocation and SSG solutions, with more accurate resolution (at higher expense) generally manifesting as higher
variance and lower reliability index (βCDF = 3.2362 for SSG as opposed toβCDF = 3.2566 for point collocation).
The quasi-second-order sequential approaches again show improvement over the first-order sequential approaches,
and the multifidelity approach again succeeds in finding the high-fidelity optimum despite the optimizer only being
interfaced with the low-fidelity MVFOSM UQ. Overall, the quasi-second-order sequential approaches (highlighted
in blue) are the most efficient approaches, followed by the MVFOSM-based multifidelity approaches (highlighted in
magenta).

TABLE 5: PCE- and SC-based design results, steel column, test problem

Design Expansion Integration Evaluations
approach variables approach (Fn, Grad) βCDF Cost

PCE Bilevel Uncertain Pt Collocp = 2 (1320, 1320) 3.2566 4000.0
PCE Sequential 1 Uncertain Pt Collocp = 2 (990, 550) 3.2566 4000.0

PCE Sequential Q2 Uncertain Pt Collocp = 2 (660, 330) 3.2566 4000.0
PCE{MV, Unc} Multifidelity 1 Uncertain Pt Collocp = 2 (821, 491) 3.2566 4000.0

PCE/SC Bilevel Uncertain SSG w = 2 (2388, 2388) 3.2362 4000.0
PCE/SC Sequential 1 Uncertain SSG w = 2 (1791/995, 995/597) 3.2362 4000.0

PCE/SC Sequential Q2 Uncertain SSG w = 2 (1194, 597) 3.2362 4000.0
PCE/SC{MV, Unc} Multifidelity 1 Uncertain SSG w = 2 (1376/1369, 779/772) 3.2362 4000.0

7. CONCLUSIONS

This paper has investigated the usage of stochastic expansion methods, particularly the nonintrusive polynomial chaos
expansion and Lagrange interpolation-based stochastic collocation, for computing statistics and design derivatives
of statistics for several algebraic benchmark problems with known solutions. The primary distinction between these
two stochastic methods is that PCE must estimate coefficients for a known basis of orthogonal polynomials (using
sampling, linear regression, tensor-product quadrature, cubature, or Smolyak sparse grids) whereas SC must form an
interpolant for known coefficients (using quadrature or sparse grids).

These UQ approaches are employed in design under uncertainty studies employing two stochastic sensitivity
approaches, one based on expansions of response functions and their design sensitivities over uncertain variables and
another based on combined expansions of response functions over design and uncertain variables. Although it is shown
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that both approaches are capable of exact results, computational experiments indicate that the former approach may be
preferable for general usage. In two test problems employing rational functions, convergence rates forL2 integrated
metrics were shown to be more than twice as fast asL∞ metrics for postprocessing of the same combined expansions,
indicating the need to distinguish dimensions undergoing integration from dimensions undergoing optimization. In
particular, this implies restriction of stochastic expansion approximation to dimensions requiringL2 metrics (mean,
variance, probability) and handling of dimensions requiringL∞ metrics (minima and maxima) through other means
(i.e., direct optimization without stochastic expansion approximation). For infinitely differentiable smooth problems,
related work [33] has shown thatL2 andL∞ convergence rates are indistinguishable in this case and that combined
expansions can reduce computational expense; however, this level of smoothness is too strong of an assumption in
most applications.

The ability to efficiently compute moments and moment design sensitivities provides the foundation for ex-
ploration of bilevel, sequential, and multifidelity formulations to design under uncertainty. Quasi-second-order ap-
proaches are shown to be preferred to first-order approaches within sequential formulations, both in terms of compu-
tational efficiency and algorithmic robustness in locating the optimal design. Multifidelity approaches are shown to
be capable of coercing the low-fidelity optimization to converge to the high-fidelity optimum, and an inexpensive but
still representative low-fidelity UQ model is shown to be critically important to the overall efficiency of the process.
The MVFOSM-based low-fidelity UQ model is highly successful in this regard. For the four test problems presented,
the most efficient and accurate approach is either the MVFOSM-based multifidelity approach (short column and can-
tilever beam) or the quasi-second-order sequential approach (Rosenbrock and steel column). Thus, while the bilevel
approach with SQP is highly effective and is itself based on solving an approximate second-order subproblem using
quasi-Newton updates, benefit has been demonstrated in moving past these simpler bilevel approaches.

Areas for future work include improved support for reliability metrics through efficient tail probability estima-
tion [35] (replacing the simple moment-based approximations used in this paper) and improved stochastic scalability
through the use of adjoint derivative enhancement and adaptive stochastic refinement schemes.
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