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In any subsurface exploration and development, indirect information and measurements, such as detailed geological
description, outcrop studies, and direct measurements (such as seismic, cores, logs, and fluid samples), provide useful
data and information for static reservoir characterization, simulation, and forecasting. However, core and log data de-
lineate rock properties only in the vicinity of the wellbore, while geological and seismic data are usually not directly
related to formation permeability. Pressure transient test (PTT) data provide dynamic information about the reservoir
and can be used to estimate rock properties, fluid samples for well productivity, and dynamic reservoir description.
Therefore, PTT data are essential in the industry for the general purposes of production and reservoir engineering as
well as commonly used for exploration environments. With the need for improved spatial resolution of the reservoir
parameters, grid-based techniques have been developed in which the reservoir properties are discretized over a fine grid
and characterization of the probable state of the reservoir is sought using the Bayesian framework. Unfortunately, for
the exploration of hydrocarbon-bearing formations, the available prior information is often limited: in particular, un-
expected geological features, such as fracture and faults, may be present. There are two groups of recent methods for
dynamic characterization of the reservoir: (i) data assimilation techniques, e.g., ensemble Kalman filter (EnKF) and (ii)
maximum-likelihood techniques, such as gradient-based methods. The EnKF is designed to produce a set of realizations
of the reservoir properties that fit the PTT data; however, the method often fails to honor the data when unexpected
features are not captured by the prior model. The alternative gradient-based methods do provide a good fit to the PTT
data. They can also be made efficient for high-dimensional problems by using an adjoint scheme for determining the
gradient of the log-likelihood function. However, as a maximum likelihood technique, this method only yields a single
realization of the reservoir. It is important to maintain a model of the uncertainty of the reservoir characterization after
PTT data assimilation, so that the risk associated with future decisions is understood. We therefore present and investi-
gate a stochastic, gradient-based method that allows for proper sampling of realizations of the reservoir parameters that
preserve the fit with the PTT data. The results indicate that our proposed method is quite encouraging for efficiently
generating realizations of rock property distributions conditioned to PTT data sets and a given prior geostatistical
model.

KEY WORDS: Bayesian inference, geological applications, transient well test interpretation, reservoir
characterization

1. INTRODUCTION

Pressure transient testing is a long established procedure [1–3] for determining the productivity of a well and the prop-
erties of the formation (reservoir) from downhole and/or surface pressure and flow-rate measurements. In a pressure

∗Correspond to Richard Booth, E-mail: RBooth2@slb.com

2152–5080/12/$35.00 c© 2012 by Begell House, Inc. 323



324 Booth et al.

transient test (PTT), a well is produced (or injected) for a known period of time (drawdown test) and subsequently
may be shut in for a buildup test, or for a sequence of production and buildup periods. During the PTT, the flow rate
at the production well (surface or downhole) and transient pressure in the wellbore and/or in a observation well are
measured. Using conventional interpretation methods [Horner or Semilog (MDH) and/or type-curve matching with
the aid of derivative plots], reservoir pressure, an effective ‘average’ permeability of the reservoir, the skin factor, the
wellbore storage, etc., are obtained from the PTT data.

The permeability obtained from a single drawdown or buildup test is an average permeability over a radius of
investigation [4]. In other words, the mild permeability heterogeneity around the wellbore within a radius of investi-
gation is averaged by the transient pressure diffusion during a transient well test. However, if in addition to the well
test data acquired at the production well, the transient pressure data acquired at other spatial locations are available
(interference tests performed in several wells [5]), it is possible to establish a more complete picture of the spatial
distribution of the reservoir parameters. For instance, vertical interference tests conducted with multiprobe wireline
formation testers can be used to determine the spatial distribution of the permeability vertically around the wellbore
[6]. However, whether using a single transient test or multiwell (multiple spatial location) interference tests, it is well
known that the sensitivity of PTT to small-scale spatial variations of the permeability or other formation parameters
is fairly low. On the other hand, significant geological features, such as a region of low permeability (sealing faults)
or high permeability (conductive fractures and faults), might still be identifiable from the pressure transient data.

At the exploration phase during the early years of the well, when PTTs are used for reservoir characterization and
determination of well productivity, the prior reservoir knowledge is usually minimal at the well test scale. Larger scale
reservoir properties might be available from seismic and geology and/or outcrop analogies, and at a small scale, the
prior formation knowledge might be available from logs or cores. Therefore, for exploration and development pressure
transient testing, the existence of and locations of many subseismic features, such as strong spatial permeability
variations, faults, fractures, pinch outs, etc., are not known a priori. Furthermore, we are unlikely to have a detailed
geostatistical description of the reservoir.

The method of Backus and Gilbert as also described in [4, 7], provides one method for determining the spatial
variation of reservoir properties. However, the assumption of small variations in the properties makes the method of
Backus and Gilbert inappropriate for geological feature identification. Moreover, its lack of robustness when it is used
with inaccurate data suggests the need for some sort of prior modeling.

We therefore need to follow a Bayesian framework to use PTT data for spatial resolution of reservoir parameters,
with a probabilistic prior description of the reservoir updated by the measurements to give a (probabilistic) posterior
description of the reservoir. To capture the spatial variability of the reservoir parameters, we turn to “pixel” methods,
with the reservoir parameters discretized over a grid. In previous works, these grids have typically been regular [8, 9],
principally because the prior geostatistical model required a regular grid. Irregular grids with a finer resolution close
to the wellbore are useful for the numerical simulation of the well test, and moreover, we expect that the resolution of
the inversion should be highest closest to the wellbore. For this reason, we use the same irregular grid that is also used
for numerical simulation of the PTT data to discretize the reservoir.

In this paper we first describe a prior model that can efficiently describe the geostatistics of the reservoir properties
on an irregular grid. We then obtain an expression for the posterior probability distribution of the reservoir parameters.
The probability density function is expensive to evaluate, and therefore, a more simple description is required. One
of the most useful pieces of information that can be extracted from the posterior probability density is the maximum
likelihood parameters. However, this information alone does not tell us how likely these parameters are and, thus,
some measure of the uncertainty is also usually desirable, typically either random samples from the distribution or a
Gaussian approximation to the posterior probability distribution.

One method that has received much recent attention [10, 11] is the ensemble Kalman filter (EnKF), in which the
probability distribution is represented by an ensemble of samples that are updated as each new measurement becomes
available. The ensemble Kalman filter assumes that at each step the probability distribution is Gaussian, and failure
of either the Gaussian model to capture the true probability distribution or the ensemble to accurately capture the
Gaussian model can lead to failure of EnKF. This is potentially more of a problem for inversion of PTT data than for
other applications of EnKF, because in well testing, the early time measurements give important information about the
near-wellbore permeability distribution, which cannot easily be recovered from measurements at later times. In [12],
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we found that, although the EnKF method can give excellent results, its success is dependent on how accurately the
prior described the true model and, therefore, is not always appropriate for identifying and characterizing unexpected
reservoir features. The EnKF method does not always accurately match the PTT data.

In contrast, gradient-based methods for determining the maximum a posteriori estimation of parameters are able
to accurately match with PTT data and are applicable even when the probability distribution is not adequately approx-
imated by a Gaussian model. In this paper, we review how to efficiently calculate gradients using adjoint variables
and then show how the priors that we have introduced are useful in improving the progress of gradient-based descent
methods.

Because these methods only determine the most likely parameters, we then investigate methods to produce sam-
ples from the posterior distribution. Existing methods once again rely on the assumption of a Gaussian model for
the posterior probability distribution, but in this paper, we detail a method for proper sampling from the posterior
distribution by means of the Langevin equation.

2. PRIOR MODEL

The prior model is a probability density functionalπ0[u], which describes the likelihood of a particular set of pa-
rameters (reservoir or formation properties),u (e.g., the spatially variable porosity and components of permeability),
representing the true state of the reservoir. The prior model can always be written in the form

π0[u] ∝ exp (−R[u]) ,

where for commonly used Gaussian priors the functionR[u] will be quadratic. The functionR[u] will typically itself
be described by parameters that characterize our prior knowledge of the reservoir, such as a typical correlation length
or the local variance of the permeability. These parameters that describe the prior are known as “hyperparameters,”
to distinguish them from the parameters of the model under analysis. Given a particular set of parameters, we need
to model the likelihood of a particular set of pressure measurementsM being made, or the “posterior update.” The
pressure measurements will never be exact due to various sources of noise, particularly when oil is being produced
from the well. When the errors of each measurement are considered as independent and Gaussian, the likelihood of a
particular set of measurementsM is

π[M|u] ∝ exp(−I[u]), where I[u] =
1
2

Nw∑
m=1

Nt∑
r=1

[pwm(u, tr)− p̃wm(tr)]
2

σ2
wm(tr)

,

whereNw, Nt are respectively the number of wells and pressure measurements;pwm(u, tr) andp̃wm(tr) are respec-
tively the simulated pressures in the well (of the model described by parametersu) and the measured pressures in the
well at timestr; andσ2

wm(tr) is the error variance of the measurement. Using Bayes’ theorem, we are able to deduce
that the posterior distribution of the parameters as

π[u|M] ∝ exp (−H[u]) , where H[u] = I[u] + R[u].

For this application, it is important that the prior is independent of the grid and that it provides a sufficient description
of the small-scale spatial correlation of the parameters. At the same time, only very limited geostatistical informa-
tion may be available and, thus, ideally the prior should be described by a small number of hyperparameters. Local
Gaussian random fields can satisfy all of these requirements. For a parameteru(x), wherex is a spatial vector, a local
Gaussian random field prior is described by

R[u(x)] =
1
2

∫
uLudx,

whereL is a linear differential operator, such as

Lu = h2∇4u− h1∇2u + h0u,
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for arbitrary constantsh0, h1, h2. This random field has a useful variogram, as shown in [13], and is best described by
rewriting the linear operator as

Lu =
1

σ∗2
(
ρ4∇4u− 2Sρ2∇2u + u

)
, (1)

whereρ is a correlation length,S (which can vary between−1 and1) controls the shape of the variogram, andσ∗2 is
related to the local covarianceσ2 by

σ∗2 =
4πρ2

√
1− S2

cos−1 S
σ2,

in two dimensions, and for three-dimensional random fields by

σ∗2 = 4π
√

2(S + 1)ρ3σ2.

The key advantage of employing this type of random field is that, once the problem is discretized, the inverse co-
variance matrix is readily obtained—it is simply the finite difference matrix for the differential operator described in
Eq. (1)—and it will be sparse.

Each component of the permeability is approximately log-normally distributed, and thus,

ux = log kx − log kx,

can be modeled by a local Gaussian prior as above. The remaining components of the permeability distribution may
be treated similarly, defininguy anduz. It is possible to treat the porosity in the same way,

uφ = log φ− log φ.

However, such a model allows the possibility ofφ > 1 and therefore can only be applied when either it is clear
beforehand that the porosity is small (i.e.,φ ¿ 1) or that the variation of the porosity is small.

The prior model should not only describe the spatial correlation of the parameters, but also the local correlation
between distinct parameters (e.g., permeability and porosity). Then, the complete prior model can be written as

π0[u] ∝ exp
(
−1

2

∫
uT Au + uxLxux + uyLyuy + uzLzuz + uφLφuφ dx

)
, (2)

whereu = (ux, uy, uz, uφ)T andA is a4 × 4 matrix, the inverse of the covariance matrix between the parameters.
The operatorsLx, etc., are of the form (1), although theh0 term can be included withinA. This model is described
by at most 22 hyperparameters: four average values; four correlation lengths; four structure hyperparameters; and ten
entries inA. However, it is easy to significantly reduce this number of hyperparameters by, for example, assuming that
the correlation lengths and structure hyperparameters are all equal, and/or by assuming that the permeability is either
fully isotropic or instead that there are only horizontal and vertical components of permeability, with the permeability
identical in thex andy directions. If the permeability is known to be isotropic withu = log k − log k, then the prior
model is simply

π0[u] ∝ exp
[
−1

2

∫
u

(
h2∇4u− h1∇2u + h0u

)
dx

]
. (3)

3. FORWARD AND ADJOINT MODELS

3.1 Forward Model

In this paper, we consider pressure diffusion for a single-phase, constant-viscosity, and slightly compressible (the rate
of change of density with pressure is linear) fluid in a three-dimensional porous media. In the absence of any sources
or sinks, the pressure field in the reservoir is described by the diffusivity equation as

ctφ
∂p

∂t
= ∇ ·

(
K
µ
∇p

)
, (4)
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wherect is the total compressibility,K is the diagonal permeability tensor, andµ is the fluid viscosity. Note that
gravity is neglected throughout, because for a weakly compressible fluid, the only effect of gravity is to introduce a
hydrostatic term to the pressure, which is normally termed as potential.

We do not intend for our numerical grid to capture the geometry of the wellbore. Therefore, we apply Peaceman’s
model [14] and treat the well as a line source within the grid blocks through which it penetrates. The wellbore pressure
in themth well then evolves according to

Cwm
dpwm

dt
=

∑

j∈Bm

WIj (pj − pwm)− qm(t), (5)

whereCwm is a property of the well and the fluid,qm is the flow rate of fluid produced from the well,Bm is the set of
grid blocks that wellm penetrates, and in thejth grid blockWIj is the Peaceman well index andpj is the grid block
pressure. The discretized model for the evolution of the pressure in grid blocki is

ctViφi
∂pi

∂t
−Aijpj +

Nw∑
m=1

∑

j∈Bm

δijWIj (pj − pwm) = 0, (6)

whereVi is the volume of theith grid block,Aijpj is the (symmetric) finite-volume discretization of the right-hand
side of (4), andδij is the Kroneckerδ function. The initial pressure in both wells and reservoir is known (although it
would also be possible to include this initial pressure as an additional unknown parameter to be determined from the
pressure data). The reservoir permeability enters the forward model [Eqs. (5) and (6)] viaAij andWIj .

To determine the sensitivity of the pressure transient data to changes in the reservoir parameters, we must deter-
mine the gradient ofH[u]. The gradient ofR[u] can be easily determined yielding a linear function ofu; however,
determining the gradient ofI[u] is more difficult. The most direct method of determining this gradient is simply to use
finite differences with small variations made to the parameter values. This approach is impractical because we would
need to vary the parameters in each grid cell, leading to an extremely large number of model evaluations. Fortunately,
we are able to obtain the gradient much more effectively by employing an adjoint method, which will require only a
single evaluation of the forward model [Eqs. (5) and (6)] and a single evaluation of an adjoint model.

3.2 Adjoint Model

The difficulty in finding the gradient ofI with respect tou arises because we are unable to find a closed form for
pwm[u]; however, by introducing adjoint variables to the pressure in the grid blocks and the wells,λi, λwm, we need
never explicitly calculate the gradient ofpwm with respect tou. We introduce

J [u, pi, pwm, λi, λwm] =
1
2

Nw∑
m=1

Nt∑
r=1

[pwm(tr)− p̃wm(tr)]
2

σ2
wm(tr)

+
Nw∑

m=1

∫ T

0

λwm(t)


Cwm

dpwm

dt
+ qm(t)−

∑

j∈Bm

WIj (pj − pwm)


 dt

+
∑

i

∫ T

0

λi(t)


ctViφi

∂pi

∂t
−Aijpj +

Nw∑
m=1

∑

j∈Bm

δijWIj (pj − pwm)


 dt,

and do not strictly enforce thatpwm andpi satisfy (5) and (6), but instead note that when these equations are satisfied,
I[u] = J [u, pi, pwm, λi, λwm], ∂J/∂λwm = 0, and∂J/∂λi = 0. We can also seek the necessary conditions whichλi

andλwm must satisfy if we are to ensure that∂J/∂pwm = 0 and∂J/∂pi = 0, and find that we require

−Cwm
dλwm

dt
=

∑

j∈Bm

WIj (λj − λwm)−
Nt∑
r=1

pwm(tr)− p̃wm(tr)
σ2

wm(tr)
δ(t− tr), (7)
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and

−ctViφi
∂λi

∂t
−Aijλj +

Nw∑
m=1

∑

j∈Bm

δijWIj (λj − λwm) = 0, (8)

with the final conditionsλi(T ) = 0 andλwm(T ) = 0. The adjoint problem [Eqs. (7) and (8)] is almost identical to
the forward model for the pressure; however, unlike the forward problem, it must be solved backward in time, starting
at a timet = T , after the last of the pressure measurements. Also in solving the adjoint problem, the rate of fluid
production from the well must be replaced by the mismatch between the measured values of pressure in the wells and
the values obtained by the forward model.

When the pressure and its adjoint solve (5)–(8), we have (writingUj for the value of a generic parameter in grid
block j),

dJ

dUj
=

∂J

∂Uj
+

Nw∑
m=1

(
∂J

∂pwm

dpwm

dUj
+

∂J

∂λwm

dλwm

dUj

)
+

∑

i

(
∂J

∂pi

dpi

dUj
+

∂J

∂λi

dλi

dUj

)
=

∂J

∂Uj

and moreover, with (5) and (6) satisfied,I[u] = J [u, pi, pwm, λi, λwm] for all u, and so the derivative ofI[u] is

dI

dUj
=

∂J

∂Uj
.

For example, the derivative ofI with respect to the porosity in grid blocki is

∂I

∂φi
= Vict

∫ T

0

λi(t)
∂pi

∂t
dt. (9)

It should be noted that this isnot the same as the value in grid blocki of the derivative ofI with respect to the
parameter, which is instead (

∂I

∂φ

)

i

=
1
Vi

∂I

∂φi
= ct

∫ T

0

λi(t)
∂pi

∂t
dt. (10)

This second representation of the gradient is more useful because it is not affected by the size of the grid block. The
derivative with respect toux, uy, uz may be obtained in a similar way, although the matrixAij and the well indexes
must be differentiated.

The approach that we have outlined thus far is applicable to determining a fully anisotropic permeability distribu-
tion and a porosity distribution. Henceforth, to aid the exposition of the problem, we restrict ourselves to a reservoir
with an isotropic permeability distribution, with log-permeability denoted byu, and with known porosity. The more
general methodology follows along similar lines to the simplified approach that we now describe.

4. GRADIENT DESCENT

Our aim in studying this inverse problem is primarily to find the true reservoir parameters; however, we must recognize
that the information that we provide will almost never be sufficient to conclusively answer this question. A complete
understanding of the posterior probability distribution would be the most complete answer that we could hope to give,
but even when the reservoir is described by a modest number of parameters, a complete description of the posterior
probability distribution is often numerically intractable.

A starting point for describing the posterior probability distribution is to find the most likely set of parameters.
The simplest method for finding the most likely set of parameters is to use the steepest descent method. Crucially,
the steepest descent method only uses the value ofH[u] and its gradient, which, as we have described in the previous
section, may be evaluated inexpensively. The steepest descent method is usually given by

un+1 = un − αn
∂H

∂u
[un],
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whereαn is a parameter to be determined andun is the estimate of the minimum aftern iterations of the method.
For sufficiently small values ofαn, it is guaranteed thatH[un+1] will be lower thanH[un]; however, to make good
progress with as few iterations, and therefore model simulations, as possible we need to chooseαn as large as possible.
A line search scheme is therefore used to determine an optimal value ofαn. As noted in the previous section, when
working with an irregular grid it is appropriate to use the discretization of the gradient as given by (10) rather than
(9), as this expression is not affected by the size of the grid blocks.

One interpretation of the steepest descent scheme is as the explicit Euler method discretization of

∂u

∂τ
= −∂H

∂u
. (11)

A minimizer ofH[u] is a stable, steady-state solution to the above equation, and thus for large values ofτ, we expect
this equation to find a local minimizer ofH. The explicit Euler discretization of Eq. (11) is only conditionally stable.
In practice, the line search ensures that theτ-step is sufficiently small to ensure stability. The maximum permissible
τ-step for which the explicit Euler discretization is stable will be small whenever the problem is stiff. Because from
(3)

∂R

∂u
= h2∇4u− h1∇2u + h0u,

the local Gaussian regularization that we are proposing will yield a stiff problem at this stage, becoming stiffer as the
grid is refined. This stiff behavior is likely to be a generic property of all scale-independent prior models. If we are
forced to take small steps, then we will have slow convergence and be required to perform many simulations of the
model and its adjoint.

To avoid the restrictions of the stability criterion, we should consider implicit schemes for the discretization of
(11), e.g. ,

un+1 = un − αnθ
∂H

∂u
[un+1]− αn(1− θ)

∂H

∂u
[un],

whereθ lies between 0 and 1 (this scheme is unconditionally stable providedθ ≥ 1/2). However, because∂H/∂u
is both nonlinear and nonlocal, it is not easy to solve forun+1, unlessθ = 0. We shall therefore treat the term inH
arriving from the prior model differently from the term arriving from the update and consider the scheme

un+1 = un − αn
∂I

∂u
[un]− αnθLun+1 − αn(1− θ)Lun. (12)

The linear part of the scheme shown in Eq. (12) is still unconditionally stable forθ ≥ 1/2. Thus, this scheme avoids
the stiffness problem caused by the prior model while still allowing us to easily solve forun+1, because the update is
treated explicitly. When the nonlinear and nonlocal term provides the dominant contribution toward stiffness, it may
be appropriate to use a predictor-corrector scheme; however, the fast convergence of such schemes is still dependent
on the use of a reasonably small step size.

The semi-implicit scheme (12) permits larger steps to be taken, although the scheme is still not guaranteed to be
unconditionally stable. To determine an optimal value ofαn, a line search is still required. We ensure that the line
search satisfies the Wolfe conditions [15] given as

H[un + 1] ≤ H[un] + c1

∫ [
∂H

∂u
(un)

]2

dx, (13)

and ∣∣∣∣
∂H[un+1]

∂αn

∣∣∣∣ ≤ c2

∣∣∣∣
∂H[un]

∂αn

∣∣∣∣ (14)

where0 < c1 < c2 < 1 are chosen to control the accuracy of the line search. The second Wolfe condition (14)
requires the derivative of the likelihood function with respect to the line-search parameter. Because we are using the
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scheme (12), rather than the standard steepest descent scheme, this is no longer simply given by the scalar product of
the current gradient and the descent direction. Nevertheless, it is easily evaluated and given by

dH[un+1]
dαn

=
∫

∂H

∂u
[un+1]

dun+1

dαn
dx,

with

(1 + αnθL)
dun+1

dαn
= −∂I

∂u
[un]− θLun+1 − (1− θ)Lun,

found by differentiating (12) with respect toα.
The steepest descent method will converge toward the most likely reservoir parameters. The adaptation to the

steepest descent method (12) allows us to work with appropriately stiff priors on fine grids.

4.1 Application to an example

We seek to identify a zone of low-permeability across a single-layered reservoir, as shown in Fig. 1, with PTT data
taken from an active production well and two observation wells. The true permeability distribution contains a zone of
low permeability, separating one of the observation wells from the producer. The permeability distribution used as a
starting point for steepest descent is homogeneous, with a permeability identical to the permeability away from the
zone of low permeability. This permeability field is also used as the mode in our prior model. A drawdown test, in
which fluid is produced from a well, is followed by a buildup test, where the well is shut in and no fluid is produced.
Observation wells are present on either side of the band of low permeability as shown in Fig. 1. All the wells are
vertical and fully completed within the reservoir. The observed pressure measurements are shown in Fig. 2, along
with the pressure response from both the initial homogeneous model of the reservoir and the final model suggested
from the gradient descent scheme.

5. UNCERTAINTY

The steepest descent scheme can only provide information about the most likely realization of the reservoir parame-
ters; however, the information provided from well testing will never be sufficient to completely determine the reservoir
properties and, thus, we should expect our result to be subject to a great deal of uncertainty. There are two broad ap-
proaches that can be applied to dealing with this uncertainty. One possibility is to describe the likelihood of realizations
that are close to the most likely realization and thereby attempt to quantify the level of uncertainty in the realization.

FIG. 1: Plots of the permeability distribution. The first image represents the true permeability distribution, from which
synthetic pressure measurements were produced. The second image is an estimate of the most likely permeability
distribution consistent with the synthetic pressure measurements, as generated by the gradient descent scheme. The
location of the producer well is marked with PROD, and the observation well locations are marked with OBS1/OBS2.

International Journal for Uncertainty Quantification



Inversion of Pressure Transient Test Data 331

FIG. 2: Comparison of the observed pressure measurements (points) with the pressure response generated by the
reservoir model of Fig. 1 (solid line). The pressure response of the initial homogeneous permeability distribution is
shown as a dotted line.
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This could be done by approximating the second derivative of the log-likelihoodH[u] for the most likely realization,
which can be done efficiently by making use of the gradients used as part of the minimization procedure. An alterna-
tive approach is to seek actual realizations from the posterior, and even with this approach the gradient can be used to
help match the pressure transient data. We present, in this section, a method for each of these two approaches.

5.1 Quasi-Newton Methods

Quasi-Newton methods attempt to build an increasingly accurate description of the second derivative ofH[u] as
part of the minimization ofH. This is achieved by using the many gradients ofH that are calculated as part of the
minimization scheme. The availability of the second derivative also improves the convergence of the scheme, beyond
that of steepest descent. One of the most effective quasi-Newton schemes is L-BFGS scheme [15], an adaptation of
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) scheme. Both the BFGS and L-BFGS schemes use the values of the
parameters and their gradients at previous iterations to approximate the Hessian matrix; however, the L-BFGS scheme
only retains a limited number of the previous iterates. This allows the Hessian matrix to be represented by a low-rank
update to an initial approximation.

If the updates to the parameters and the gradients are written as

sn = un+1 − un and yn = ∇H(un+1)−∇H(un).

then the Hessian matrix of the BFGS scheme can be represented [15] in the following compact form:

Bn = B0 −
(

B0Sn Yn

)(
ST

n B0Sn L̂n

L̂T
n −En

)−1 (
ST

n B0

Y T
n

)
,

whereB0 is a simple initial approximation,

Sn = [s0, . . . , sn−1], Yn = [y0, . . . , yn−1],

andL̂n andEn are defined by

(L̂n)ij =
{

sT
i−1yj−1 for i > j,

0 otherwise,

En = diag[sT
0 y0, . . . , s

T
n−1yn−1].

To obtain the L-BFGS scheme, one simply must discard the earliest entries fromSn andYn to ensure that no more
than a limited numberm of updates are stored. Once an approximation of the Hessian matrix is obtained, the new
reservoir parameters are found by solving

Bnsn = −αn∇H(un),

whereαn should be determined by a line search. As the scheme begins to converge and the approximation to the
Hessian improves, we expect thatαn should approach 1. Because the L-BFGS scheme will only make a low-rank
update toB0, it is sensible to include the prior covariance matrix as a term inB0, e.g. ,

B0 = χ + Bprior,

whereBprior is the discretized covariance matrix for the prior andχ is a parameter that can be scaled to accommodate
the new information obtained from the calculation of gradients.

With a local approximation to the posterior covariance, one can try to obtain samples close to the parameters of
maximum a posteriori likelihood; however, the samples produced by this approach may not be reliable for nonlinear
problems, failing to accurately reproduce the data [16]; which an alternative approach, the randomized maximum
likelihood method (RML) is suggested to produce more reliable samples of the posterior distribution. This method
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replaces the prior mode with a random sample drawn from the prior, and adds noise to the true data measurements.
A sample is then drawn by finding the parameters of maximum a posteriori likelihood for this new distribution. This
method seems to be a reasonable approach and will clearly produce samples that appear to honor both the prior model
and the data. However, in addition to being computationally intensive to produce samples, it is only guaranteed to
draw samples correctly from the posterior if it is Gaussian. We instead propose a method based on the Langevin
equation in which noise is added as part of the minimization process, rather than a priori, and which, in the long term,
is guaranteed to draw true samples from the posterior, regardless of its distribution.

5.2 Langevin Method

In the context of history matching of geological models, the Langevin method has previously been suggested in [13]
and applied in [17, 18]. We now extend the use of adjoint-derived gradients and semi-implicit schemes to the Langevin
method. As noted in [13], the Langevin equation given by

∂u

∂τ
= −∂H

∂u
+
√

2η(x, τ), (15)

whereη(x, τ) represents white noise, allows one to generate samples from the posterior distribution. The distribution
of u as given by (15) is governed by the Focker-Planck equation [19]. The Focker-Planck equation shows that the
equilibrium distribution, achieved for large values ofτ, is equal to the posterior distribution. Therefore, for large
values ofτ, realizations of (15) are all samples of the posterior distribution and it is possible to produce many samples
from the posterior (although these will only become independent when separated by large values ofτ).

One can note the similarity between the Langevin equation and the continuous form of steepest descent (11), and
thus, we approximate (15) using a similar scheme to (12), which can be written as

un+1 = un − αn
∂I

∂u
[un]− αnθLun+1 − αn(1− θ)Lun +

√
2αnη(x), (16)

whereη(x) represents white noise only in the variablex and the
√

αn factor is a consequence of integration of
white noise. Using a partially implicit scheme for simulating the Langevin equation has been considered before [20],
although applied to a much simpler application than considered here.

The introduction of random noise in (16) prevents a line search being used to optimally chooseαn. Indeed, we
must allow the objective function to increase sometimes. However, it is still important that a check is made because
the scheme (16) is only partially implicit. We cannot expect to generate samples if the value ofαn has been chosen so
large that the underlying deterministic scheme is numerically unstable. We can apply a check based on the Metropolis-
Hastings algorithm, in place of a line search, thereby guaranteeing that we correctly draw samples from the posterior
distribution.

The Metropolis-Hastings algorithm [21] requires that, to determine the next sampleun+1, we have a method of
picking a proposed sampleu′n (the “proposal”) from a probability distribution (the “proposal distribution”) with den-
sity functionQ[u′n;un], which may depend on the current sampleun. Once a proposal has been drawn, we calculate

paccept =
π[u′n|M]Q[un; u′n]
π[un|M]Q[u′n; un]

,

i.e. , the ratio between relative likelihoods ofun andu′n in the posterior distribution and the Langevin-derived proposal
distribution. Ifpaccept > 1, then the proposalu′n should always be accepted as the new value forun+1; otherwise, it
should only be accepted with probabilitypaccept, and on rejectionun+1 should take the valueun. In the long term, the
Metropolis-Hastings algorithm will produce samples from the target posterior distribution provided that the proposal
distribution allows all possible values ofu to be reached. However, in practice, convergence can be very slow, either
because many of the proposals are rejected or because there is slow mixing (i.e.,u′n is strongly correlated toun). In
the ideal case, where the proposal distribution is identical to the posterior distribution, we always find thatpaccept = 1
and, thus, acceptance is guaranteed and there is perfect mixing because the proposal distribution is independent ofun.
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The effectiveness of the Metropolis-Hastings scheme lies in choosing a good proposal distribution for which rejections
are rare and the level of mixing is high (i.e., proposals are not strongly correlated to the currents). Simple proposal
distributions, such as settingu′n equal toun plus some random noise, often fail to simultaneously meet these two
requirements.

To use the Metropolis-Hastings algorithm as a check on our results from the Langevin equation, we use (16) to
define the proposal distribution as

Q[u′n; un] = πη

[
1√
2αn

(
u′n − un + αn

∂I

∂u
[un] + αnθLu′n + αn(1− θ)Lun

)]
,

where

πη[η] ∝ exp
[
−1

2

∫
η(x)2 dx

]
.

It is reasonable to expect that, for the same rate of rejection, the use of the gradient should allow for greater mixing
than is possible when the proposal only updates the previous sample with random noise. The parameterαn controls
the rate of mixing, with greater mixing for large values ofαn. However, because the deterministic scheme fails for
largeαn we should expect a high probability of rejection ifαn is chosen to be too large. If the proposal is accepted,
then the Metropolis-Hastings check does not require any additional expensive evaluations of the forward model or
adjoint model.

We can investigate the rate of acceptance by first calculatingpaccept when there is no update to the posterior, i.e. ,
whenI = 0, for which

log (paccept) =
αn

4

∫
(1− 2θ)

[
(Lun)2 − (Lu′n)2

]
dx. (17)

Equation (17) shows that when we are sampling from a Gaussian distribution, the proposal generated by the Langevin
method is guaranteed to be accepted provided we takeθ = 1/2. This is, therefore, the optimal choice ofθ in (15)
and shows that this method can quickly sample from Gaussian probability distributions (although other methods will
often be even more efficient). For a more abstract nonlinear Brownian bridge sampling problem considered in [20], the
choice ofθ = 1/2 proved crucial to ensure that the optimal step size did not tend to zero as the number of parameters
to be sampled increased. As noted in [20] it is likely that such behavior holds more generically when sampling from
a distribution that is a nonlinear update of a Gaussian distribution, and our experience supports usingθ = 1/2 for the
realization of samples conditioned to pressure transient testing data.

With θ = 1/2, we find that the acceptance probability satisfies

log (paccept) = I[un]− I[u′n] +
1
2

∫
(u′n − un)

[
∂I

∂u
(un) +

∂I

∂u
(u′n)

]
dx +

αn

4

∫ [
∂I

∂u
(un)

]2

−
[

∂I

∂u
(u′n)

]2

+2
[

∂I

∂u
(un)− ∂I

∂u
(u′n)

]
(Lun + Lu′n) dx.

For small values ofαn, we have

log (paccept) ≈ I[un]− I[u′n] +
1
2

∫
(u′n − un)

[
∂I

∂u
(un) +

∂I

∂u
(u′n)

]
dx,

and the conditions under which each of these two terms will be positive are analogous to the first and second Wolfe
conditions (13) and (14). Moreover, for a descent direction, each of these terms would be positive for sufficiently
smallαn in the absence of noise, and so acceptance is likely for smallαn.

The step size,αn, serves as a mixing parameter with small values ofαn giving slow mixing, but ensuring accep-
tance, and large values ofαn giving enhanced mixing, but risking rejection. The efficiency of the scheme depends
carefully on an optimal choice ofαn to obtain a balance, avoiding both slow-mixing and frequent rejection. To date
we have only employed ad hoc methods to determineαn based on the rejection likelihoods obtained.
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5.2.1 Application to the Example

We have applied the Langevin method to the problem considered in Section 4.1. The initial permeability distribution
used was identical to the homogeneous permeability distribution used to initialize the steepest descent method. This
allows us to demonstrate the ability of the Langevin method to invert for the pressure response, although in practice
it might be more efficient to initialize the Langevin method with the final state of a deterministic scheme, such as
steepest descent.

The step size required to achieve a reasonable acceptance rate must be small for the first few steps at the start of the
inversion procedure, but we are soon able to increase it toαn = 100 while ensuring an acceptance rate which remained
consistently high. A further increase of the step size was feasible for many iterates, but the consistent application of
a higher step size eventually caused the algorithm to become stuck at a certain set of parameters with all generated
proposals having an extremely low acceptance probability. The importance of takingθ = 0.5, and therefore avoiding
any bias in simulating the prior, was also demonstrated: significantly smaller step sizes were required to maintain the
acceptance rate withθ 6= 0.5

As can be seen in the first plot of Fig. 3, the log-likelihood function approaches its equilibrium fairly rapidly,
despite the lack of an efficient method of choosing the search step. However, the rapid convergence of the objective
function does not necessarily confirm stationarity of the distribution, and it can be seen from the second plot of Fig. 3
that it takes longer before the initial state is forgotten. The progress toward providing a history match and towards

FIG. 3: Plots of the progress of the objective function (log likelihood) and the norm of the vector of parameters against
the increase in the Langevinτ parameter.
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sampling from the stationary posterior distribution is shown in the permeability samples of Fig. 4, whereas samples
of the permeability distribution from later iterates are shown in Fig. 5. The pressure responses corresponding to these
samples are shown in Fig. 6.

5.2.2 Improvement of Performance of the Langevin Method

It is critical that the mixing rate is improved and/or that the work required for each proposal is reduced if the Langevin
method is to be applicable for real-world problems. We have found that using a semi-implicit method allows one
to increase the mixing rate while avoiding frequent rejections, and clearly, the adjoint method significantly reduces
the numerical effort per proposal, but these steps alone are unlikely to be sufficient to make the method feasible in
practice. In [17] the number of parameters to be determined was reduced by the use of the Karhunen-Loeve expansion
to represent the prior model of the permeability distribution. In [17] the gradient was also first calculated using a
coarse grid to quickly establish the likely acceptance probability of the true permeability distribution; although the
benefit of this strategy is somewhat diminished here by our use of adjoint methods for determining the gradient.

Because the use of a semi-implicit method for the prior helped significantly, we might try to apply a similar idea for
the nonlinear nonlocal likelihood update (theI[u] term). Although it is possible to use an explicit predictor-implicit
corrector scheme to allow this term to be treated implicitly, even when we chooseθ = 1/2, the proposal will not
always be accepted because the objective function is not generally quadratic.

Improved methods [22] of optimally choosing the value of the search distance would also improve the mixing
rate.

τ = 500 τ = 2000

τ = 7500 τ = 20, 000

FIG. 4: Samples of the permeability distributions obtained from the initial stages of the Langevin method. In this pe-
riod an increasingly good match with the measured pressure response is obtained, but it is not clear that independence
from the initial state has been achieved.
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τ = 120, 000 τ = 140, 000

τ = 160, 000 τ = 180, 000

FIG. 5: Samples of the permeability distributions obtained from the later stages of the Langevin method. The match
with the measured pressure response is maintained, samples are more likely to be representative of the stationary
distribution, although mixing is still slow with strong correlation between successive samples.

6. CONCLUSIONS

In this paper we have developed methodologies for estimating the likely spatial variation of reservoir parameters
based on pressure transient testing data from multiple well locations. The resolution of the grid over which reservoir
parameters are discretized and, in particular, the resolution of the grid near the wellbore, need not be an obstacle
to the matching of these reservoir parameters to pressure transient testing data. Provided that the adjoint method is
employed, there is no increase in the numerical effort required to obtain the gradient as the number of parameters
increases. Some prior information is always required, and as the resolution of the grid increases, the local correlation
implied by the prior model becomes important. Prior models that have a strong local correlation will typically lead
to stiff problems when gradient descent schemes or quasi-Newton schemes are used to search for likely posterior
parameters. The stiffness can be overcome by using a semi-implicit scheme to integrate the prior gradient.

The information provided by the pressure transient test data is usually not sufficient to eliminate the uncertainty
in the estimation of the reservoir parameters. We have shown that the Langevin approach may be used to directly
produce realizations of the posterior distribution. The use of a semi-implicit scheme proved to be crucial for the
Langevin method to work efficiently with a large number of parameters. However, more work is needed to further
improve the rate of mixing of the Langevin method.
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FIG. 6: Comparison of the observed pressure measurements (points) with the pressure responses generated by the
reservoir models of Fig. 5 (solid lines). The pressure response of the initial homogeneous permeability distribution is
shown as a dotted line.
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