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Generalized Polynomial Chaos (gPC) is known to exhibit a convergence breakdown for problems involving strong non-
linear dependencies on stochastic inputs, which especially arise in the context of long term integration or stochastic
discontinuities. In the literature there are various attempts which address these difficulties, such as the time–dependent
generalized Polynomial Chaos (TD-gPC) and the multielement generalized Polynomial Chaos (ME-gPC), both leading
to higher accuracies but higher numerical costs in comparison to the standard gPC approach. A combination of these
methods is introduced, which allows utilizing parallel computation to solve independent subproblems. However, to be
able to apply the hybrid method to all types of ordinary differential equations subject to random inputs, new modifi-
cations with respect to TD-gPC are carried out by creating an orthogonal tensor basis consisting of the random input
variable as well as the solution itself. Such modifications allow TD-gPC to capture the dynamics of the solution by
increasing the approximation quality of its time derivatives.
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1. INTRODUCTION

Polynomial Chaos, as initially introduced by Wiener in 1938 [1], is a spectral expansion method with application in
the field of uncertainty quantification. It essentially utilizes Hermite polynomials in terms of Gaussian uncorrelated
random variables to decompose a stochastic process into deterministic and nondeterministic parts. In 1947 Cameron
and Martin [2] proved that this expansion converges in mean–square for square integrable random processes. Ghanem
and Spanos [3] pioneered the application of Polynomial Chaos by a Galerkin projection in context of the finite–element
method in the field of solid mechanics in 1991. In the following years the projection method became more popular,
leading to a broader range of applications, such as CFD (e.g., [4, 5]). In their paper in 2002, Xiu and Karniadakis
[6, 7] proposed a generalization of the Hermite Chaos for other classes of probability distributions by establishing a
correspondence between the probability density function and the weighting function of orthogonal polynomials by
hypergeometric series. In 2010, Ernst et al. [8] proved the convergence of generalized Polynomial Chaos (gPC) for
certain probability distributions.

In 2006, Wan and Karniadakis [9–11] developed a multielement generalized Polynomial Chaos method (ME-
gPC) to overcome weaknesses of gPC with respect to accuracy when dealing with strong nonlinear dependencies
on the random input. These cases can occur, for example, when the application involves long term integration or
stochastic discontinuities. Its basic idea lies in decomposing the probability space of the stochastic input and solving
independent local problems. ME-gPC proved to be efficient in reducing the degree of the nonlinear dependencies
but still has some restriction with respect to long term integration. For the case of stable limit cycles Le Maı̂tre et al.
[12, 13] proposed an asynchronous time integration, which was developed to allow gPC to capture the dynamics of the
solution. In [14] dynamical orthogonal field equations are developed, which derive equations to compute an optimal
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basis in the deterministic and stochastic space by an orthogonality criteria. In their paper in 2010, Gerritsma et al. [15]
introduced a discrete time–dependent approach (TD-gPC) for ordinary differential equations subject to uniformly
distributed random inputs, which allows to gain a good accuracy with a possible overhead regarding the numerical
costs. The goal of this method is to reduce nonlinear dependencies by a basis transformation to a set of new random
variables which are defined by the solution itself at certain discrete time steps. In 2011, the authors proposed a hybrid
combination of both ME-gPC and TD-gPC [16, 17]. The key idea is to reduce the numerical cost by exploitation of
the trivial parallelization structure of ME-gPC and usage of time dependent basis functionals in each element arising
from the decomposition of the probability space of the random input.

This work provides a further development of the time–dependent approach regarding systems of stochastic or-
dinary differential equations. Thereby, the TD-gPC is extended by a modified version, which maintains an explicit
dependency on the initially introduced random variables by maintaining an orthogonal basis. This allows for the ap-
plication of TD-gPC to systems of ordinary differential equations involving uncertain parameters within the governing
equations. However, the numerical cost is significantly increased, which is not only due to a blown-up system size but
also to a necessarily large number of numerical quadrature points for maintaining accuracy over time. To be able to
employ a parallel numerical computation and therefore distribute the numerical cost a hybrid approach is developed
combining TD-gPC with a domain decomposition method.

This work is structured in the following way:
Section 2 gives a short review of gPC, an introduction to TD-gPC, and a modified TD-gPC approach. Section 3

investigates the application of the modified TD-gPC to a system of differential equations followed by an analysis of
the numerical integration problems in Section 4. Section 5 recapitulates the multielement approach and introduces its
combination with time–dependent basis functionals. Numerical results for the hybrid method are provided in Section
6 followed by conclusions drawn from this work in Section 7.

2. TIME–DEPENDENT GENERALIZED POLYNOMIAL CHAOS

First we recall the main results related to the standard gPC method and depict some issues related to nonlinear depen-
dencies on the random input.

2.1 Generalized Polynomial Chaos

As developed by Xiu and Karniadakis [6], the generalized Polynomial Chaos method (gPC) represents an extension
to the original Polynomial Chaos method, initially introduced by Wiener [1]. It is a stationary, i.e., time–independent
spectral method for square–integrable random variables.

SupposeX is a random variable defined on some probability space(Ω,F ,P), whereasΩ denotes the sample space
with samplesω ∈ Ω, F ⊂ 2Ω, aσ–algebra defined on the power set ofΩ, andP a probability measure. Furthermore,
let X be square integrable, i.e.,

E(X2) =
∫

Ω

X2 dP < ∞. (1)

As a generalization of the Cameron and Martin theorem [2], aL2–decomposition ofX is then given by

X(ω) =
∞∑

i=0

xiψi[ζ(ω)]. (2)

Here,ζ denotes a (possibly multidimensional) random variable subject to some probability distribution, which defines
the set of polynomials{ψi} according to the Askey scheme (see Table 1). For example, ifζ is a Gaussian distributed
random variable, then Hermite polynomials are chosen, which represents the classical Polynomial Chaos approach. A
uniformly distributedζ leads to the choice of Legendre polynomials. The principle is to selectL2–basis functionals,
which are orthogonal with respect to the probability density functionfζ of ζ, i.e.,

〈ψi, ψj〉 :=
∫

Ω

ψi(ζ)ψj(ζ) dP =
∫

ψi(z)ψj(z)fζ(z) dz = 〈ψi,ψi〉δij . (3)
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TABLE 1: Askey scheme for selecting polynomials corresponding to certain types
of distributions

Case Probability distribution Askey–Chaos Support
Continuous Gaussian Hermite–Chaos (−∞,∞)

Gamma Laguerre–Chaos [0,∞)
Beta Jacobi–Chaos [a, b]

Uniform Legendre–Chaos [a, b]
Discrete Poisson Charlier–Chaos {0, 1, 2, . . .}

Binomial Krawtchouk–Chaos {0, 1, 2, . . . , N}
Negative binomial Meixner–Chaos {0, 1, 2, . . .}
Hypergeometric Hahn–Chaos {0, 1, 2, . . . , N}

whereasδij denotes the Kronecker Delta. Note that from here and in the following we do not explicitly denote the
domain of integration in cases involving the probability density function for notational convenience. The advantage of
gPC is that a functional dependency on the random variable is given a priori for the decomposed random variableX.
The task left is to calculate the modesxi of X, which is usually numerical expensive, especially when dealing with
stochastic processes. For those, the procedure described above is applied pointwise, i.e., given a stochastic process
X = X(t; ω), dependent on some time variablet ≥ 0; the gPC decomposition reads

X(t;ω) =
∞∑

i=0

xi(t)ψi[ζ(ω)], (4)

with time dependent modesxi = xi(t). Of course, since infinite sums are numerically intractable, (4) needs to be
truncated at some finite integerM , resulting in an approximationXM of X defined by

XM (t; ω) :=
M∑

i=0

xi(t)ψi[ζ(ω)]. (5)

The truncation orderM is dependent on two discretization parameters, which can be chosen a priori. The first one,
denoted byP , represents the maximal total polynomial degree allowed. In a multidimensional case, the functionalsψi

are constructed via a tensor product of corresponding one–dimensional polynomials; therefore, the total polynomial
degree of someψi equals the sum of the degrees of the one–dimensional polynomials. The second parameter, denoted
by L, represents the dimension of the random vectorζ = (ζ1, . . . , ζL), whereasζi are scalar random variables whose
distribution is known a priori. Both parameters combined result in the corresponding truncation parameterM , via

M + 1 =
(P + L)!

P !L!
. (6)

Note that even for lowP andL the number of unknown variablesM +1 grows rapidly. This leads to a huge numerical
drawback, since every single modexi has to be discretized further by an appropriate discretization method, which in
the literature is often referred to as the “curse of dimensionality.”

2.2 Application of gPC to Ordinary Differential Equations

The procedure outlined above decomposes a stochastic process into a (finite) summation of products between deter-
ministic functions in time and chosen stochastic basis functionals, the so–called Chaos Polynomials. Next, we briefly
review their application to ordinary differential equations subject to stochastic input via a standard Galerkin projection
approach.

Let us consider, without loss of generality, the following scalar problem:
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Seeku = u(t; ω) with t ∈ [0, T ] ⊂ R andω ∈ Ω, such that

L(u, t; ω) = f(t;ω), (7)

whereL denotes some differential operator in the time variablet. The stochastic input is assumed to be parametrized
by some vector of independent random variablesζ = (ζ1, ζ2, . . .). Hence, problem (7) can be reformulated to obtain
the form

Seeku = u(t; ζ) = u[t; ζ(ω)] with t ∈ [0, T ] andω ∈ Ω, such that

L(u, t; ζ) = f(t; ζ), (8)

whereas the notation ofω is dropped for notational convenience. At this stage, the gPC discretization ofu is employed
by truncation ofζ to a finite dimensional vector with dimensionL and by choosing the maximal polynomial degree
P . The approximationuM of u is now inserted into the governing equation (8) leading to

L
(

M∑

i=0

uiψi, t; ζ

)
= f(t; ζ). (9)

There exist several possibilities of solving (9), e.g., a least–squares approach or collocation methods. In this work we
focus on the Galerkin projection onto the spaceV spanned by the Chaos Polynomials, i.e.,V := span{ψ0, . . . , ψM},
which ensures the orthogonality of the residual toV. Therefore, (9) is multiplied byψj for j = 0, . . . , M and
integrated by means of the inner product〈·〉 onV, resulting in

〈
L

(
M∑

i=0

uiψi, t; ζ

)
,ψj

〉
= 〈f, ψj〉, j = 0, . . . , M. (10)

This leads to a coupled deterministic system of differential equations, whose size is equal toM + 1. Note, that for
linear operatorsL it holds that if uncertainty is only introduced in either the right-hand sidef or initial or boundary
conditions, the system actually reduces to a stochastic decoupled structure.

2.3 Time–Dependent Basis Functionals

A well known difficulty when employing gPC is the possible convergence breakdown in cases involving strong nonlin-
ear dependencies on the random inputζ. These cases can occur, for example, when dealing with long term integration
or stochastic discontinuities. Since a stationary, i.e., time–independent approach is used, the time evolution of the
probability density function ofu cannot be captured efficiently after some application-dependent critical time. This
can clearly be seen when taking a look at the discretization parameterP , which essentially only allows for nonlinear
dependencies up to the order ofP . This problem has been studied in various works, e.g., [9, 11, 12, 15, 18, 19], lead-
ing to promising modifications toward gPC to overcome the lack of convergence. Here, we want to recapitulate and
extend one of the more recent approaches introduced by Gerritsma et al. [15], called the time–dependent generalized
Polynomial Chaos (TD-gPC).

Recall the gPC approximationuM of u given by

uM (t; ζ) =
M∑

i=0

ui(t)ψi(ζ). (11)

At each fixed timet∗, uM defines a random variableη depending onζ via

η := uM (t∗; ζ) =
M∑

i=0

ui(t∗)ψi(ζ). (12)
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The key idea is to expressuM in terms ofη for timest ≥ t∗. Then, the nonlinear dependency onζ is given implicitly
throughη; however, the solution’s dependence onη is linear att = t∗ and is expected to be almost linear for short
times t ≥ t∗, which is leading to an efficient representation ofu via gPC in terms ofη. For a certaint∗∗ > t∗

the change of variables is repeated once again to ensure low nonlinear dependencies. This principle is then applied
throughout the simulation interval[0, T ]. To maintain optimal (orthogonal) basis functionals the Chaos Polynomials
are recomputed for every change of variables, such that

∫
ψ

(new)
i (η)ψ(new)

j (η)fη(η) dη = 〈ψ(new)
i , ψ

(new)
i 〉δij , (13)

whereasfη denotes the probability density function ofη. However, it is important to note that computing the prob-
ability density functionfη of η is numerically not feasible. Therefore, the integration in (13) is transformed to the
original random variableζ in the following way:

∫
ψ

(new)
i (η)ψ(new)

j (η)fη(η) dη =
∫

ψ
(new)
i [uM (t∗; ζ)]ψ(new)

j [uM (t∗; ζ)]fζ(ζ) dζ, (14)

whereasfζ denotes the probability density function ofζ. This has the advantage that sincefζ anduM at t = t∗ are
both known, all integrals can be evaluated in terms ofζ and still represent the dependencies onη without explicit
knowledge offη.

After having computed the new Chaos Polynomials the Galerkin projection is applied to the governing equations
similar as described for the gPC. However, new initial conditionsu

(new)
j (t∗) for j = 0, . . . , M need to be provided.

This can easily be achieved by an orthogonal projection of the current solution valuesu
(old)
i (t∗) at timet = t∗ onto

the new basis via

u
(new)
j (t∗) =

M∑

i=0

u
(old)
i (t∗)

〈ψ(old)
i , ψ

(new)
j 〉

〈ψ(new)
j , ψ

(new)
j 〉

, j = 0, . . . , M, (15)

whereas

〈ψ(old)
i ,ψ

(new)
j 〉 =

∫
ψ

(old)
i (ζ)ψ(new)

j [uM (t∗; ζ)]fζ(ζ) dζ. (16)

The projection step (15) can be simplified further via the relations

u
(new)
0 (t∗) = u

(old)
0 (t∗), (17)

u
(new)
1 (t∗) = 1, (18)

u
(new)
j (t∗) = 0, for j = 2, . . . , M, (19)

since we are dealing with a first-order expansion at timet = t∗, whereas we use the convention that the initial
polynomial of degree 0 is defined byψ(new)

0 := 1 and the polynomialψ(new)
1 is defined with leading coefficient equal

to 1.
The computation of the stochastic moments fort ∈ [t∗, t∗∗), here the mean̄u and the varianceσ2(u) needs to be

carried out according toη via

ū(t) = u0(t), (20)

σ2(u)(t) =
M∑

i=1

ui(t)2〈ψ(new)
i , ψ

(new)
i 〉, (21)

due to the orthogonality of the basis functionalsψ
(new)
i .
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2.4 Modified TD-gPC

When dealing with system equationsL(u) = f , which involve an explicit dependence of the right-hand sidef on the
random inputζ, the basis as constructed in the previous section might not be sufficient. This issue is illustrated by the
following example:

Supposef = f(u; ζ) := −ζu for some initial stochastic input random variableζ with arbitrary probability
distribution. Differentiatingf with respect tot by applying the chain rule we obtain

di

dti
f(u; ζ) = (−1)i+1ζi+1u, i ≥ 0. (22)

Now, if we consider the Taylor expansion ofu we arrive at

u(t∗ + ∆t; η) = η−∆tζu(t∗; η) +
(∆t)2

2
ζ2u(t∗; η) + . . . . (23)

From this it can be seen that a basis in terms ofη cannot approximate the time evolution ofu in an exact way due to the
explicit dependence off on ζ. Therefore, TD-gPC as introduced in the previous section is not feasible for this class
of applications leading to an error contribution of orderO(∆t). However, it is possible to overcome this drawback by
defining a new basis in terms ofη andζ via a tensor product, such thatu can be expressed by the expansion

u(t; ω) =
P∑

i=0

Q∑

j=0

uij(t)ψi(η)φj(ζ), (24)

whereas{ψi}P
i=0 and{φj}Q

j=0 are orthogonal polynomials with respect to the probability distribution ofη andζ,
respectively. Such a basis is capable of representing the time derivatives ofu to the order ofO[(∆t)Q+1] in this case.
The next section will demonstrate this basis extension w.r.t. a system of differential equations and give numerical
results, which display the improved convergence behavior.

3. SYSTEM OF DIFFERENTIAL EQUATIONS—A LINEAR OSCILLATOR

To the knowledge of the authors the approach described in (24) has not been considered for a system of differential
equations. Our goal in this section is to adapt this approach in that context. This is exemplified considering a linear
oscillator. For this problem it is well known that the standard gPC expansion fails to capture the dynamics of the
solution after some certain time [12]. To overcome this issue Le Maı̂tre et al. [12] introduced an asynchronous time
integration method valid for problems involving stable limit cycles. Here, we show that employing TD-gPC leads to a
powerful alternative when modified accordingly.

3.1 Model Equations

Consider the equations of motion of a linear oscillator in two dimensions:

d

dt
x1(t) = x2(t), (25)

d

dt
x2(t) = −qx1(t), (26)

for t ∈ [0, T ] ⊂ R with q > 0, positionx1, and impulsex2 = ẋ1. The frequency of the system is
√

q/2π and
the initial conditions are set tox1(t = 0) = 1 andx2(t = 0) = 0. We will consider a random frequency, i.e.,
q = q(ζ) = q0 + q1ζ, with a uniformly distributedζ ∼ U(−1, 1). The analytical solutions are given by

x1(t; ζ) = cos
[√

q(ζ)t
]
, (27)

x2(t; ζ) = −
√

q(ζ) sin
[√

q(ζ)t
]
. (28)
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3.2 Discretization Employing TD-gPC

Since we are dealing with a vector–valued problem in two dimensions, we extend the procedure as described in
Section 2.3 to this case, represented at some reset timet = t∗. We begin with the standard gPC discretization ofx1

andx2 given by

x1(t; ζ) =
P∑

i=0

x
(1)
i (t)Li(ζ), (29)

x2(t; ζ) =
P∑

i=0

x
(2)
i (t)Li(ζ), (30)

with Li denoting the Legendre polynomials in terms of the uniformly distributed random variableζ. Here,M = P
since we are dealing with a one–dimensional random input. Therefore, the indexi of Li is equal to the degree of the
considered Legendre polynomial. At some reset timet = t∗ we define two new random variables corresponding to
the solution components via

η(1)(ζ) :=
P∑

i=0

x
(1)
i (t∗)Li(ζ), (31)

η(2)(ζ) :=
P∑

i=0

x
(2)
i (t∗)Li(ζ). (32)

From this point on, we are dealing with a multidimensional stochastic input given byη(1) andη(2). This needs to
be taken into account when employing gPC in terms of the new random variables. However, sinceη(1) andη(2) are
dependent random variables viaζ, we suggest a modification to the classical approach outlined in [15] to maintain
orthogonality of the multidimensional basis functionals, which has proved to be more numerically stable. We start
with computing orthogonal Chaos Polynomialsψ

(i)
j , i = 1, 2, j = 0, . . . , P with respect to each random variable

η(i), i = 1, 2, such that
∫

ψ(i)
s (η)ψ(i)

r (η)fη(i)(η) dη = 〈ψ(i)
s ,ψ(i)

s 〉δsr, s, r = 0, . . . , P, i = 1, 2. (33)

This can be achieved, for example, by employing a Gram–Schmidt orthogonalization method. Note that computing
the integral in (33) can be transformed to the original random variableζ as described in Section 2.3 to avoid the
explicit calculation of the probability density functionsfη(i) of η(i), i = 1, 2.

Next, we define a new temporary basis by a tensor product of the corresponding one–dimensional polynomials via

xk(t;η(1); η(2)) =
∑

0≤i+j≤P

xk,ij(t)ψ
(1)
i (η(1))ψ(2)

j (η(2)), t ≥ t∗, k = 1, 2, (34)

which alternatively can be expressed by

xk(t; η(1); η(2)) =
M∑

j=0

x
(k)
j (t)φj(η(1), η(2)), t ≥ t∗, k = 1, 2, (35)

by a one–to–one correspondence between the basis functionals and coefficients, whereas for the numberM + 1 of
terms in (35) it holds

M + 1 =
(P + 2)!

P !2!
=

(P + 1)(P + 2)
2

. (36)
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Note that at this stage, the basis polynomialsφi are not orthogonal to each other because of the dependency ofη(i),
i = 1, 2 introduced throughζ. Therefore, we orthogonalize the basis via a Gram–Schmidt method in two dimensions,
maintaining an orthogonal projection ofx1 andx2. To this end we define an orthogonal basis via

ψ0 := 1, (37)

ψi(η(1),η(2)) := φi(η(1), η(2))−
i−1∑

j=0

〈φi,ψj〉
〈ψj , ψj〉ψj(η(1), η(2)), i = 1, . . . , M. (38)

Since we now employ an orthogonal basis, it is straightforward to calculate the required initial conditions att = t∗

by a projection similar to the one introduced in Section 2.3:

x
(new)
j (t∗) =

M∑

i=0

x
(old)
i (t∗)

〈ψ(old)
i , ψ

(new)
j 〉

〈ψ(new)
j , ψ

(new)
j 〉

, for j = 0, . . . ,M. (39)

Since the Gram–Schmitdt orthogonalization exhibits difficulties regarding numerical stability, we suggest using the
“twice is enough” modification, as stated in [20].

Note that in case of the first reset within the simulation time interval all (dummy) modes of the “old” solution with
index i > P are set to zero. However, it is also possible to start with a lower expansion and add the new required
terms initialized with0 when needed. The procedure described above is then repeated at every necessary time step,
which can be identified by some error estimation criteria or chosen to be each time step within the time discretization
procedure.

For postprocessing purposes the meanx̄1, x̄2 and the variancesσ2(x1), σ2(x2) can be calculated in the same
manner as by the classical gPC via

x̄i(t) = x
(i)
0 (t), (40)

σ2(xi)(t) =
M∑

j=1

(
x

(i)
j

)2

〈ψj , ψj〉, (41)

for i = 1, 2, due to the orthogonal nature of the projection.

3.3 Application of the Modified TD-gPC

Before we state the numerical results, one major drawback of TD-gPC is analyzed as already described in Section 2.4,
namely a convergence breakdown when the uncertain parameter is explicitly involved within the differential equation
(this is the case here) and not exclusively in initial conditions. For this purpose we take a look at the second equation
of the problem:

d

dt
x2 = −q(ζ)x1. (42)

Employing any deterministic time–discretization scheme represented by some functiong, this results in

x2(t + ∆t; ζ) = g[x1(t; ζ), x1(t + ∆t; ζ), t, ζ], (43)

for some time step size∆t > 0. Here the explicit dependency ofg on ζ is crucial. If changing the variables from
ζ to η(i), i = 1, 2 due to TD-gPC, we arrive at an optimal representation of the solutionx1, x2 itself at every time
step but we are unable to capture the solution’s time evolution, i.e., its time derivative in terms of the new random
variables, sinceg is still depending on the initial random variableζ. Hence, when progressing in time, the error made
because of a poor representation of the time derivatives increases steadily, leading to unfeasible results similar to the
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case demonstrated in Section 2.4. Therefore, the temporary basisψ
(1)
i , ψ

(2)
i is modified to take into account the initial

random variableζ, resulting in

x1(t;η(1),η(2), ζ) =
P∑

0≤i+j≤P

Q∑

k=0

x
(1)
ijk(t)ψ(1)

i (η(1))ψ(2)
j (η(2))Lk(ζ), (44)

x2(t;η(1),η(2), ζ) =
P∑

0≤i+j≤P

Q∑

k=0

x
(2)
ijk(t)ψ(1)

i (η(1))ψ(2)
j (η(2))Lk(ζ), (45)

whereasLk, k = 0, . . . , Q again denote the Legendre polynomials in terms ofζ according to gPC. Next we construct
a new orthogonal basis{ψj}M

j=0 analog to the procedure described above, resulting in

xi(t;η(1), η(2), ζ) =
M∑

j=0

x
(i)
j (t)ψj(η(1), η(2), ζ), t ≥ t∗, i = 1, 2, (46)

with the number of terms given by

M + 1 =
(P + 1)(P + 2)(Q + 1)

2
. (47)

The calculation of the initial values at timet = t∗ is carried out using the projection described in (39). The same holds
concerning the calculation of the mean and the variances.

3.4 Numerical results

Next we present numerical results with respect to various TD-gPC expansion orders. The random frequency is defined
to be

q(ζ) := 4π2(1 + 0.2ζ). (48)

We employ an explicit Runge–Kutta scheme of order 4 with a time step of∆t = 0.001 to minimize the error contri-
butions introduced by the time discretization. Furthermore, a reset was carried out in every time step throughout the
simulation interval[0, 75]. To reduce the errors arising from the numerical integration we employ a Gauss–Legendre
quadrature rule with100 quadrature points. The results concerning the absolute errors of the time trajectories of the
mean and the variance as well as their relative errors regarding the first solution componentx1 are presented in Figs. 1
and 2, respectively. Since a discretization employing the time–dependent approach results in some certain total num-
ber of modesM + 1, the results of TD-gPC are compared to the standard gPC approach using the same number of
modesM + 1, e.g., forP = 2 andQ = 2 TD-gPC this equals18 modes, i.e.,P = 17 for the gPC.

As expected, the standard gPC employing Legendre polynomials is only capable of following the solution for
early times even for a large number of modes. The time–dependent approach, however, is performing slightly worse if
Q = 0, i.e., the errors arising from a poor representation of the time derivative start to dominate quickly. If this is taken
into account by increasing the expansion orderQ to Q = 1 andQ = 2, TD-gPC converges to almost exact results
w.r.t. the relative errors. Optimal results are achieved employingP = 2 andQ = 2, which lead to an optimal basis
to represent the solution itself and its time derivative. It is interesting to point out the convergence property regarding
P andQ in the context of TD-gPC. If one compares the results forP1Q1 andP2Q1 there are no significant error
improvements achieved. In contrast, comparing the results forP2Q0, P2Q1, andP2Q2 an exponential convergence
property is achieved with respect toQ. However, usingP = 0 andQ > 0, TD-gPC actually would be equal to the
standard gPC and therefore lead to unfeasible results. This emphasizes the importance of an optimal basis both for the
solution itself as well as for its time derivative.
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(a) (b)

(c) (d)

FIG. 1: Evolution of the trajectories corresponding to the mean and the variance for the standard gPC employing
P = 17 modes (total 18) and the time–dependent variant employingP = 2, Q = 2. (a,b) Standard legendre chaos
P = 17 and (c,d) time–dependent variantP = 2, Q = 2.

4. ANALYSIS OF THE RESET STEPS

4.1 Numerical Quadrature

The key point of applying the (modified) TD-gPC approach to systems of differential equations lies in the shift of the
nonlinear complexity towards the numerical evaluation of the integrals involved when computing the inner product of
the Chaos basis functionals{ψi}M

i=0. For simplicity, we elaborate our analysis on the first reset step at timet = t∗

and consider the nonmodified TD-gPC version. Our goal is to evaluate the inner product

〈ψiψj , ψk〉 =
∫

ψi(η)ψj(η)ψk(η)fη(η) dη, (49)
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(a) (b)

(c) (d)

(e) (f)

FIG. 2: Relative errors of mean and variance ofx1 corresponding to various discretization parameters. Relative error
mean with a total of (a) 6 modes each, (c) 12 modes each, and (e) 18 modes each and Relative error variance with a
total of (b) 6 modes each, (d) 12 modes each, and (f) 18 modes.
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for somei, j, k ∈ {0, . . . , M}. As described in the previous section, we transform the integral in (49) to the original
random variableζ via the relation

〈ψiψj ,ψk〉 =
∫

ψi[u(t∗; ζ)]ψj [u(t∗; ζ)]ψk[u(t∗; ζ)]fζ(ζ) dζ, (50)

whereasu denotes the solution of the underlying system of ODEs,u being expressed via the relation

u(t; ζ) =
M∑

i=0

ui(t)ψ̃i(ζ), (51)

for t < t∗, whereψ̃i denotes the Chaos Polynomials before the reset. Here, without loss of generality, we assume the
same expansion orderM before and after the reset step at timet = t∗ (note that unnecessary modes can be set equal
to 0). Estimating (50) is carried out by utilizing an appropriate Gaussian quadrature rule according to the probability
distribution represented byfζ of ζ. Therefore, we arrive at

〈ψiψj , ψk〉 ≈
Nq∑

n=1

wn(ψi ◦ u)(ζn)(ψj ◦ u)(ζn)(ψk ◦ u)(ζn), (52)

whereNq denotes the number of quadrature points,wn the corresponding weights, andζn the corresponding quadra-
ture points. Sinceu andψM are both polynomials of degreeM , (ψM ◦u) is a polynomial of degreeM2. To ensure an
exact integration of (50) for alli, j, k ∈ {0, . . . , M} the well established result for Gaussian quadrature rules applies,
leading to the condition

Nq = d3M2 + 1
2

e. (53)

Applying this analysis to further reset times, we arrive at

Nq = d3MNr + 1
2

e, (54)

whereNr denotes the current number of the reset step. This, of course, is a worst–case estimate leading to the
requirement of a high numberNq of quadrature points when progressing in time by resetting the basis, even for
low expansion ordersM . This presents a major drawback of the TD-gPC approach; however, since at every reset step
the solutionu is transformed to obtain a linear expansion, it is expected that the contribution of higher order modes
remains low for a certain time period. Therefore, the high nonlinear orders in (50) do only have a small contribution
to the integral, leading to a much more accurate numerical integration than the estimate suggests. However, this
observation relies on numerical results and is certainly application dependent. Therefore, it is still an open question if
there exist more accurate numerical integration approaches which remain numerically cost effective.

4.2 Automatic Reset Criteria

As described in the previous section, the numerical integration of the random quantities within the initial probability
space can become increasingly demanding on the accuracy of the employed quadrature scheme. However, increas-
ing the number of quadrature points employed will have a significant impact on the numerical cost involved when
computing a new basis within a reset step. One way to address this problem is to minimize the needed amount of
reset steps within one solution of a stochastic dynamical system. This can be achieved by defining a variance based
automatic reset criteria in the following form:

Given a threshold parameterθ ∈ (0, 1) and a solutionu(t; η, ζ) =
∑P

i=0

∑Q
j=0 uij(t)ψi(η)φj(ζ) at timet > 0,

perform a reset if the following condition holds:
∑

i∈I ui0(t)‖ψi‖2L2(Ω)

σ(t)2
> θ, (55)

International Journal for Uncertainty Quantification



A Hybrid gPC Method for Stochastic Dynamical Systems 49

whereasσ2(t) denotes the variance of the solution at timet > 0 andI := {i ∈ [0, P ] ∩ N : ψi is nonlinear}.
The idea is to monitor the dominance of the nonlinear part of the solution’s dependency on the reset variableη

with respect to the variance. In our numerical computations this criteria was able to reduce the total amount of reset
steps significantly. An alternative to this criteria can be found in [15], which directly measures the magnitude of the
nonlinear modes with respect to the linear modes. However, we still choose to apply a reset at every discrete time step
without using an automatic criteria. The reason is that for highly dynamical processes too few reset steps can result in
significantly increasing numerical errors, such that a solution cannot be captured accurately anymore.

Therefore a new approach is needed to reduce the number of quadrature points to keep the computational costs as
low as possible. In this work, this is achieved by a hybrid combination of a domain decomposition in probability space
and the TD-gPC. This has the benefit, that due to smaller stochastic variations in subelements of the probability space,
a smaller number of quadrature points suffices if the number of elements in the domain decomposition is large enough.
But since a solution for every element can be computed independently from each other, the computational costs can
be computed by an embarrassingly parallel way. The following section will address this hybrid formulation and first
demonstrate its convergence behavior for one-dimensional probability spaces and afterwards it is applied to more
complex higher–dimensional problems for which the reduction in the number of quadrature points is demonstrated.

5. HYBRID GENERALIZED POLYNOMIAL CHAOS

A major drawback of the (modified) TD-gPC is the fast–growing number of modes resulting from even low expansion
ordersP andQ and the accompanying increase in the number of quadrature points to ensure an accurate numerical
integration. Therefore, the numerical cost which comes along with solving a coupled system of differential equations
for a high number of modes increases significantly, especially when the discretization of the deterministic part of
the system is quite expensive. Hence, it is necessary to think about possibilities of reducing the numerical cost and
making the computation of the modes feasible. To achieve this goal, we want to introduce a local approach to TD-gPC
motivated by the multielement generalized Polynomial Chaos introduced by Wan and Karniadakis [9, 10], resulting in
a domain decomposition of the probability space employing time–dependent basis functionals in each element. This
leads to the task of solvingN independent problems, whereasN denotes the number of elements used, employing a
smaller number of basis functionals in each subproblem compared to solving the global problem.

5.1 Domain Decomposition

Following the procedure described in [9, 10] we decompose the sample spaceΩ implicitly by decomposing the range
of ζ. Note, that here we do not assume a scalar valuedζ, instead it holdsrange(ζ) =: B ⊂ (R ∪ {−∞,∞})d for
somed ∈ N. Furthermore,ζ denotes the original stochastic input to the system before being transformed via TD-gPC.
The decomposition ofΩ is carried out in the following way:

Let {Bj}N
j=1 be a disjoint interval decomposition ofB, such that

B =
N⋃

j=1

Bj , Bj1 ∩Bj2 = ∅ for j1 6= j2, (56)

Bj := [aj
1, b

j
1)× [aj

2, b
j
2)× · · · × [aj

d, b
j
d]. (57)

Therefore,Bj defines a multidimensional interval of dimensiond for everyj = 1, . . . , N . Note that if±∞ ∈ Bj for
somej, as is the case for the Gaussian distribution, usuallyBj is decomposed into(−∞, aj

∗), [a
j
∗, b

j
∗], (b

j
∗,∞) and

all refinements are carried out on the middle element[aj
∗, b

j
∗]. The choice ofaj

∗ andbj
∗ is distribution and application

dependent.
To achieve a decomposition of the sample spaceΩ we introduce the indicator functionIj defined by

Ij =

{
1 if ζ ∈ Bj ,

0 otherwise.
(58)
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Hence, a decomposition ofΩ is given byΩ =
⋃N

j=1 I−1
j (1), sinceI−1

i (1) ∩ I−1
j (1) = ∅ for i 6= j. Now in each

elementBj a local random variableζj is defined viaζj = (ζj
1, ζ

j
2, . . . , ζ

j
d) : I−1

j (1) 7→ Bj for j = 1, . . . , N subject
to the corresponding conditional probability distribution functionfj defined by

fj(ζj |Ij = 1) =
f(ζj)

P(Ij = 1)
, (59)

whereasf(·) denotes the probability density function of the global random variableζ. In practice the random variable
ζ

j
k defined in the element[aj

k, bj
k) is rescaled by the transformation

ζ
j
k =

bj
k − aj

k

2
Y j

k +
bj
k + aj

k

2
, (60)

subject to a new random variableY j
k defined in(−1, 1). The probability density function̄fj(·) of the vectorY j =

(Y j
1 , . . . , Y j

d ) is then given by

f̄j(yj) = det
∣∣∣∣
∂ζj

∂yj

∣∣∣∣ fj [ζj(yj) | Ij = 1] =
f [ζj(yj)]
P(Ij = 1)

d∏

k=1

bj
k − aj

k

2
. (61)

5.2 Problem Structure

The strength in decomposing the probability space lies in the independence of the resulting local problems [9, 10].
Therefore, we have that after decomposing the probability space intoN elements,N independent problems on the
corresponding probability spaces(I−1

j (1),F ∩ I−1
j (1),P[·|I−1

j (1)]) for j = 1, . . . , N have to be solved. Now the

time–dependent approach can be applied in each single element; i.e., given a solutionu(j) = u(j)(ζj) in each element
j, a new random variableηj

k is introduced via

η
j
k :=

M∑

i=0

u
(j)
i (tk)ψi(η

j
k−1, ζ

j), (62)

for a reset time stept = tk, whereasηj
0 := ζj . The solutionu(j) is then expressed in terms ofη

j
k andζj as described

in Section 2.3 and the procedure is repeated at every time step qualifying for a reset, e.g., every time step or a time
step defined by some criteria.

5.3 Calculation of the Stochastic Moments

Since a change of variables if performed in each element, the stochastic moments such as the mean and the variance
need to be calculated independently in each element and combined afterwards. Therefore, we first have to calculate the
mean and the variance locally according to Section 2.3, denoted byū(j) andσ2(u(j)), j = 1, . . . , N . Next, according
to Bayes’ theorem and the law of total probability [21], the global stochastic moments of orderm, denoted byµm,
can be calculated via

µm(u)(t) ≈
N∑

j=1

P(Ij = 1)µm(u(j))(t). (63)

Hence, the global mean is approximated by the weighted sum of the local mean values, i.e.,

ū(t) ≈
N∑

j=1

P(Ij = 1)ū(j)(t). (64)

International Journal for Uncertainty Quantification



A Hybrid gPC Method for Stochastic Dynamical Systems 51

For the variance it holds

σ2(u)(t) = µ2(u)(t)− µ1(u)(t)2

≈
N∑

j=1

P(Ij = 1)µ2(u(j))(t)−
N∑

j=1

N∑

k=1

P(Ij = 1)P(Ik = 1)µ1(u(j))(t)µ1(u(k))(t)

=
N∑

j=1

P(Ij = 1)

[
σ2(u(j))(t) + (ū(j))2 − ū(j)(t)

N∑

k=1

P(Ik = 1)ū(k)(t)

]

=
N∑

j=1

P(Ij = 1)
{

σ2(u(j))(t) + ū(j)(t)[ū(j)(t)− ū(t)]
}

. (65)

5.4 Implementation Aspects

If no adaptive refinement of the probability space with respect to the number of elements,N , is employed, the nu-
merical implementation of the local TD-gPC is carried out in a straightforward manner if a global TD-gPC solver
is available. The numerical cost involved is due to the orthogonalization of the basis functionals in each element for
every reset step. The number of reset steps can be reduced when employing suitable reset criteria, e.g., the observa-
tion of the magnitudes of modes representing nonlinear dependencies as introduced in [15] can lead to a significant
lowering of the numerical cost. However, defining a reset criteria introduces an extra source of errors; therefore, we
choose to apply TD-gPC at every time step. A summary of the local TD-gPC algorithm is given in Fig. 3.

6. NUMERICAL RESULTS FOR THE HYBRID APPROACH

In this section we demonstrate the effect of employing the local TD-gPC in the context of some benchmark problems.
First we consider a simple one–dimensional ordinary differential equation, representing the class of long term integra-
tion related problems, and the more challenging Kraichnan–Orszag three-mode problem, which represents the class of

Step 1: Choose the number of elementsN

Step 2: Loop over all elementsj:

Step 2a:Construct the local conditional random variableη(j)
0 := ζ(j) w.r.t. the initial stochastic input

Step 2b:Transformη
(j)
0 to a random variableY (j) defined on(−1, 1) via (60)and setη(j)

0 = Y (j)

Step 2c:Loop over all time stepsi:

– Construct a new random variableη(j)
i according to TD-gPC viaη(j)

i−1 , ζ(j) and the local solution
u(j)

– Construct a new set of orthogonal basis functionalsψ
(j)
i depending onη(j)

i andζ(j) w.r.t. P and
Q

– Generate new local initial conditions according to TD-gPC

Step 2d:Store the calculated local mean̄u(j) and varianceσ2(u(j))

Step 3: Calculate the global mean and variance via the stored local quantities

Step 4: Postprocessing

FIG. 3: Local TD-gPC algorithm.
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stochastic discontinuities. We focus on the illustration of the convergence properties and analyze the trade-off between
solvingN independent local problems and employing an(M +1)–dimensional TD-gPC in each element. Afterwards
we consider a multidimensional random input for the Kraichnan–Orszag three-mode problem and a chemical system
exhibiting an oscillatory solution to analyze the effect of the hybrid approach on the number of employed quadrature
points.

6.1 A Simple One–Dimensional ODE

This problem has been studied in various works, e.g., [9, 15], having the advantage that its simplicity allows one to
calculate an analytical solution. The governing equations are given by

du

dt
= −k(ζ)u, (66)

u(0) = 1, (67)

subject to a uniformly distributed random variableζ ∼ U(−1, 1), where we assume further thatk(ζ) = 1
2 (1 + ζ).

Therefore, the analytical solution and its mean and variance are given by

u(t; ζ) = exp(−k(ζ)t), (68)

ū(t) =
1− exp(−t)

t
, (69)

σ2(u)(t) =
1
2t

[1− exp(−2t)]−
[
1− exp(−t)

t

]2

, (70)

respectively. This clearly shows the increasing nonlinear dependency ofu on ζ for increasing timet due to the
exponential type of the solution, which leads to a poor convergence property when employing the classical gPC
(see, for example, [15]). Here, we only focus on the convergence behavior of the local time–dependent gPC. For our
numerical simulation we use a Runge–Kutta scheme of fourth order with a time step of∆t = 0.001 to minimize the
errors arising from the time discretization. The errors are measured in the discrete euclidean norm‖ · ‖2, i.e.,

‖ū− ūexact‖2 =

√√√√
{∑

n

[ū(tn)− ūexact(tn)]2
}

, (71)

‖σ2(u)− σ2(uexact)‖2 =

√√√√
{∑

n

[σ2(u)(tn)− σ2(uexact)(tn)]2
}

, (72)

for all discrete time stepstn = n∆t within the simulation interval[0, 100]. Figure 4 plots the error evolution for
this problem. It clearly displays an exponential convergence behavior with increasing convergence rate when refining
the elements, which is in good agreement with the results shown for the multielement gPC in [9]. Therefore, if high
accuracy is desired there is the possibility of choosing between a specific high-orderP andQ or a high number of
elements to be used. This is important, since due to the independence of the local problems it is possible to obtain
a trivial parallelization when computing the results in parallel, which leads to a very efficient solver. Hence, a small
expansion order, e.g.,P = 1 andQ = 1, which equals a total number of modesM + 1 = 4, is already sufficient to
achieve high accuracies with respect to the whole simulation time interval[0, 100]. Of course, this model problem is
small with respect to its dimension, but it serves the purpose of demonstrating the fast convergence property of the
local time–dependent approach to the exact solution.
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(a)

(b)

FIG. 4: ‖ · ‖2–error in time with respect to various orders of chaos expansions with varying number of elements. (a)
Mean and (b) variance.

6.2 The Kraichnan–Orszag three-mode problem

6.2.1 Problem Definition

The Kraichnan–Orszag three-mode problem [22] is known to fail in a short time when employing gPC. It therefore
represents a challenging benchmark problem, which has been studied in various contexts, such as adaptive multiele-
ment gPC in [9, 10] and TD-gPC in [15]. It is a nonlinear three–dimensional system of ordinary differential equations:
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dx1

dt
= x2x3, (73)

dx2

dt
= x3x1, (74)

dx3

dt
= −2x1x2, (75)

with x1(t = 0) = α + 0.01ζ, x2(t = 0) = 1.0, andx3(t = 0) = 1.0, subject to a uniformly distributed random
variableζ ∼ U(−1, 1). It is known [9, 15] that the critical range ofα for which there is a strong dependency on the
initial conditions is given by(0.9, 1). Our analysis is therefore focused onα = 0.995 and the computation is carried
out within the time interval[0, 40].

6.2.2 Numerical results

When employing TD-gPC in each element, we set the discretization parameterQ = 0, since no direct stochastic input
is given within the system of differential equations. Still, the size of the system is quite large and is given by

M + 1 =
(P + 3)!

P !3!
=

(P + 1)(P + 2)(P + 3)
6

= O(P 3). (76)

This illustrates the necessity of keeping the orderP of the expansion low, such that the resulting number of modes
M + 1 remains low. For our computations we use a Runge–Kutta solver of fourth order to solve the deterministic
part with a time step∆t = 0.001. Furthermore, we employ an equidistant refinement of the interval(−1, 1) resulting
in N = 2i elements for each refinement leveli. Relative errors are measured in theL2–norm defined in (71),(72).
Since there is no analytical solution available for this problem, the results are compared to a discretization employing
N = 64 elements and an expansion orderP = 3.

Figure 5 shows exponential convergence behavior inP as well as inN (with an exception forN ≤ 2) for both the
mean and the variance of the first componentx1 of the solution. This is in good agreement with the results obtained
for the one–dimensional problem given in Section 6.1. From this it follows that when utilizing parallel computation
of the subproblems on each element (which is possible in a trivial way due to the independence of the subproblems)
it is possible to achieve same accuracies by either refiningP or N , e.g.,P1N32 is almost as accurate asP3N1 but
only requiresM + 1 = 4 modes for theP = 1 case instead ofM + 1 = 20 modes for theP = 3 case. Since the size
M + 1 depends on the size of the corresponding deterministic system (here this equals 3), the local time–dependent
method is expected to increase its efficiency in reducing the numerical cost in trade-off to parallel computation of the
subproblems even further for larger systems of differential equations.

6.2.3 A Three–Dimensional Random Input

Up to now we demonstrated the successful application of the local TD-gPC, which preserves the exponential conver-
gence rate of the domain decomposition approach and significantly increases the accuracy compared to the standard
gPC approach. Here, we want to study the effect of the hybrid formulation on the needed amount of quadrature points
for numerical integration.

For this purpose the initial conditions are defined to be random in every variable, i.e.,

x1(t = 0) = α + 0.01ζ1, x2(t = 0) = β + 0.01ζ2, x3(t = 0) = γ + 0.01ζ3, (77)

whereasα = 0.99, β = γ = 1.0. Theζi are chosen to be identically distributed and independent random variables
with uniform distribution within(−1, 1) each. We employ an explicit Runge–Kutta method of fourth order with a
time step size∆t = 0.001 within the time interval[0, 40] and a Gaussian quadrature rule in every random dimension,
whereas a reset step is performed at every discrete time step.

As can be seen in Fig. 6 the number of employed quadrature points has a significant impact on the accuracy of
the solution compared to a Monte Carlo computation employing 100,000 samples. The results were computed by a
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(a)

(b)

FIG. 5: ‖ · ‖2–error in time with respect to various orders of chaos expansions with varying number of elements. (a)
Mean and (b) variance.

Gaussian quadrature rule employing 4 quadrature points and 20 quadrature points in each dimension. The 4-point rule
looses accuracy after a short simulation time, whereas the 20-point rule exhibits a significantly higher accuracy over
the whole time integration interval. However, the computational cost involved for the 20-point rule is significantly
higher than for the 4-point rule, since due to a three–dimensional random space, every reset step needs to evaluate
multiple integrals with either203 = 8000 or 43 = 256 total quadrature points. Figure 7 depicts the effect of the
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FIG. 6: Computed mean and variance ofx1 with respect to varying number of quadrature points for a second order
(non-modified) TD-gPC expansion.

application of the domain decomposition. Here it can be observed that the errors resulting from a poor approximation
quality of the quadrature rule is reduced quickly by increasing the number of elements employed. For512 elements
the mean is approximated accurately over the whole time integration interval, whereas for the variance more elements
are needed to achieve convergence to accurate results. However, due to the parallel computation of the independent
subproblems in each element, the total computational time is significantly reduced.

Remark 1. This hybrid method surely would benefit from an adaptive domain decomposition based on variance esti-
mate criteria. However, the combination of an adaptive procedure is quite complex due to the necessity of refining and
coarsening the domain associated with the time-dependent random variables. This complex issue will be addressed in
future publications.
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(a)

(b)

FIG. 7: Computed mean and variance ofx1 with respect to varying number of elements and 4 quadrature points in
each random dimension for a second order (non-modified) TD-gPC expansion. (a) Mean and (b) variance.

6.3 A Three–Dimensional Chemical System

Here we want to extend the hybrid approach to a system of so-called Oregonator chemical reactions exhibiting an
oscillatory dynamical behavior. This was also studied in various works; see, for example, [12, 23]. It is a three–
dimensional system of ordinary differential equations with five parameters, of which two are modeled as random
variables. The governing equations read
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dx1

dt
= k1x2 − k2x1x2 + k3x1 − k4x

2
1, (78)

dx2

dt
= −k1x2 − k2x1x2 + k5x3, (79)

dx3

dt
= k3x1 − k5x3, (80)

with deterministic initial conditionsx1(t = 0) = x2(t = 0) = x3(t = 0) = 6000. The parameters are defined as

k1 = 2, k2 = 0.1, k3 = 104, (81)

and

k4(ζ1) = 0.008(1.0 + 0.1ζ1), (82)

k5(ζ2) = 26(1.0 + 0.1ζ2), (83)

whereasζ1 andζ2 are identically distributed and independent random variables each subject to a uniform distribution
within the interval(−1, 1).

In contrast to the Kraichnan–Orszag three-mode problem, the uncertainty is directly introduced within the gov-
erning equations, which necessitates the application of the modified TD-gPC version. The numerical computations
are carried out within the time interval [0,20] and a 10-point Gaussian quadrature rule is used in each random di-
mension. The reset is carried out at every discrete time step subject to the time step size∆t = 0.001 solved by an
explicit Runge–Kutta method of fourth order. Furthermore, a second-order TD-gPC expansion is considered for the
reset random variable and a first-order expansion for the initially introduced random variablesζ1 andζ2 (notation
P2Q1).

Figure 8 depicts the numerical results for the mean and the variance of every solution component on the time
interval [10,20]. The standard gPC approach quickly fails in approximating the stochastic moments after a short time
(aroundt = 1.5), which is not explicitly depicted in the plots. However, the poor approximation quality of the standard
gPC approach can be observed within the time interval [10,20].

A convergence of the modified TD-gPC to the Monte Carlo results can be observed both for the mean and the
variance when increasing the number of employed elements from 1 to 64. Since the number of quadrature points in
each dimension is quite low and the numerical computations were carried out in parallel, the total numerical cost was
distributed effectively. This displays the efficiency of the hybrid approach also for the modified TD-gPC version.

7. CONCLUSIONS

The possible convergence breakdown in cases involving strong nonlinear dependencies on the random input for gPC
as introduced in [6] necessitates the development of improved (w.r.t. computational cost and accuracy) Polynomial
Chaos methods. This work, based on [15, 16], provides new extensions and modifications of two established variants
of gPC, namely the time–dependent generalized Polynomial Chaos (TD-gPC [15]) and the multielement generalized
Polynomial Chaos (ME-gPC [9]) in the context of a hybrid approach. These are based on maintaining an orthogonal
basis representation in time by coupling newly defined random variables in terms of the solution itself and the initially
introduced random variables in the context of systems of ordinary differential equations.

It was demonstrated that TD-gPC, along with the extensions introduced in this work, is capable of approximating
the solution of stochastic dynamical systems very accurately; however, it introduces significant additional numerical
cost, which is mainly due to a increased system size along with a high requirement on the number of employed
quadrature points for numerical integration of the random quantities. A reduction of the numerical cost can be achieved
by a hybrid combination of ME-gPC and TD-gPC, especially when employing an embarrassingly parallel computation
of the independent local subproblems, which can significantly reduce the number of modes and along the amount of
quadrature points needed to solve each subproblem accurately.
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FIG. 8: Results for the mean and variance of the three componentsx1, x2 andx3. Zoom on time interval [10,20].
Comparison of Monte Carlo 100,000 samples, standard gPC second order expansion and the hybrid modified TD-
gPCP2Q1 for 1 and 64 elements.
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Current research is focusing on improving the accuracies in the numerical integration and an extension of (local)
TD-gPC to the class of partial differential equations. Due to the additional dependencies of the solution on the space
variable, the procedure becomes significantly more complex.

Future research will address adaptive local approaches reducing the number of elements needed for achieving a
given accuracy.
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13. Le Mâıtre, O. P. and Knio, O. M.,Spectral Methods for Uncertainty Quantification, Dordrecht: Springer, 2010.

14. Sapsis, T. P. and Lermusiaux, P. F., Dynamically orthogonal field equations for continuous stochastic dynamical systems,
Phys. D, 238:2347–2360, 2009.

15. Gerritsma, M., van der Steen, J.-B., Vos, P., and Karniadakis, G., Time-dependent generalized polynomial chaos,J. Comput.
Phys., 229:8333–8363, 2010.

16. Heuveline, V. and Schick, M., Towards a hybrid numerical method using generalized Polynomial Chaos for stochastic differ-
ential equations, EMCL Preprint Series, no. 2011-03, 2011.

17. Schick, M., Uncertainty quantification for stochastic dynamical systems: Spectral methods using generalized polynomial
chaos, Ph.D. Thesis, 2012.

18. Doi, M. and Imamura, T., The Wiener-Hermite expansion with time-dependent ideal random function,Prog. Theor. Phys.,
41(2):358–366, 1969.

International Journal for Uncertainty Quantification



A Hybrid gPC Method for Stochastic Dynamical Systems 61

19. Tanaka, S. and Imamura, T., The Wiener-Hermite expansion with time-dependent ideal random function. Part II. The three-
mode model problem,Prog. Theor. Phys., 45(4):1098–1105, 1971.
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