Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN Imprimir: 0040-2508
ISSN En Línea: 1943-6009

Volumes:
Volumen 78, 2019 Volumen 77, 2018 Volumen 76, 2017 Volumen 75, 2016 Volumen 74, 2015 Volumen 73, 2014 Volumen 72, 2013 Volumen 71, 2012 Volumen 70, 2011 Volumen 69, 2010 Volumen 68, 2009 Volumen 67, 2008 Volumen 66, 2007 Volumen 65, 2006 Volumen 64, 2005 Volumen 63, 2005 Volumen 62, 2004 Volumen 61, 2004 Volumen 60, 2003 Volumen 59, 2003 Volumen 58, 2002 Volumen 57, 2002 Volumen 56, 2001 Volumen 55, 2001 Volumen 54, 2000 Volumen 53, 1999 Volumen 52, 1998 Volumen 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v77.i19.10
pages 1675-1683

DEPENDENCE OF FLUORESCENT CHARACTERISTICS OF NANOCOMPOSITES ON THE BASIS OF DYE MOLECULES AND SILVER NANOPARTICLES ON THE OPTICAL DENSITY OF COMPONENTS

S. V. Nikolaev
A.Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine 12, Academician Proskura St., Kharkiv 61085, Ukraine
V. V. Pozhar
A.Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine 12, Academician Proskura St., Kharkiv 61085, Ukraine
M. I. Dzyubenko
O.Ya. Usikov Institute for Radio Physics and Electronics, National Academy of Sciences of Ukraine, 12 Academician Proskura St., Kharkiv 61085, Ukraine; V. Karazin National University of Kharkiv, 4 Svobody Sq., Kharkiv 61022, Ukraine; Kharkiv National University of Radio Electronics, 14 Nauka Ave, Kharkiv 61166, Ukraine
K. S. Nikolaev
A.Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine 12, Academician Proskura St., Kharkiv 61085, Ukraine

SINOPSIS

It is known that the addition of plazmon metal nanoparticles to the lasant can be used to improve the radiative characteristics of the medium. However, the problem of the influence of the component ratio on the intensity of the nanocomposites fluorescence, which is relevant from applied point of view, has not been well investigated and requires additional studies. In this paper, the fluorescence of the solutions of the Rhodamine 6G and Rhodamine C dyes at different excitation wavelengths when there are silver nanoparticles is investigated. The effect of the mixture components concentration on the fluorescence amplification coefficient of the dye molecules is studied. It is shown that one can consider the relative optical density of the mixture components, which is the ratio of the optical density of the nanoadditive to the optical density of the dye at the excitation wavelength, as a generalized parameter that has influence on the fluorescent characteristics of nanocomposites. The relative optical density is maximized with increase in the concentration of nanoparticles as well as with decrease of the concentration of the dye or in the case of excitation by radiation with the spectrum closest to the maximum of plasmon resonance of nanoparticles. In this case, the increase in the fluorescence amplification coefficient is observed. If the pumping spectrum is far from the wavelength of maximum of the plasmon resonance, the concentration of the nanoparticles is low, and the dye concentration is high, then the relative optical density is small, the fluorescence gain becomes insignificant, and even its quenching may occur. The results of these studies allow us to formulate a general approach to assessing the effect of the components ratio of mixtures composed of dye molecules and metallic nanoparticles on the fluorescence intensity of fluorophore molecules.