Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN Imprimir: 0040-2508
ISSN En Línea: 1943-6009

Volumes:
Volumen 79, 2020 Volumen 78, 2019 Volumen 77, 2018 Volumen 76, 2017 Volumen 75, 2016 Volumen 74, 2015 Volumen 73, 2014 Volumen 72, 2013 Volumen 71, 2012 Volumen 70, 2011 Volumen 69, 2010 Volumen 68, 2009 Volumen 67, 2008 Volumen 66, 2007 Volumen 65, 2006 Volumen 64, 2005 Volumen 63, 2005 Volumen 62, 2004 Volumen 61, 2004 Volumen 60, 2003 Volumen 59, 2003 Volumen 58, 2002 Volumen 57, 2002 Volumen 56, 2001 Volumen 55, 2001 Volumen 54, 2000 Volumen 53, 1999 Volumen 52, 1998 Volumen 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v75.i2.40
pages 139-154

ON REQUIREMENTS TO ACCURACY OF NOISE VARIANCE ESTIMATION IN PREDICTION OF DCT-BASED FILTER EFFICIENCY

V. V. Abramova
National Aerospace University (Kharkiv Aviation Institute), 17, Chkalov St., Kharkiv, 61070, Ukraine
V. V. Lukin
National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine
S. K. Abramov
Department of Transmitters, Receivers and Signal Processing, National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine
O. Rubel
National Aerospace University (Kharkiv Aviation Institute), 17, Chkalov St., Kharkiv, 61070, Ukraine
Benoit Vozel
University of Rennes 1, Enssat, Lannion, 22300, France
Kacem Chehdi
University of Rennes I, 6, Rue de Kerampont, 22 305 Lannion cedex, BP 80518, France
J. T. Astola
Tampere University of Technology, Signal Processing Laboratory, P. O. Box 553, FIN-33101, Tampere, Finland
Karen O. Egiazarian
Tampere University, Department of Signal Processing, P. O. Box 553, FIN-33101, Tampere, Finland

SINOPSIS

Several approaches to prediction of denoising efficiency for the DCT-based filters with application to single and multichannel images corrupted by different types of noise have been proposed recently. For all of them, it has been assumed that the noise characteristics are a priori and accurately known. In this paper, we analyze the influence of errors in estimated noise variance on prediction accuracy. It is shown that this influence depends upon input parameter used in prediction. Based on the analysis, requirements to accuracy of the noise variance estimation are provided.