Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN Imprimir: 0040-2508
ISSN En Línea: 1943-6009

Volumes:
Volumen 78, 2019 Volumen 77, 2018 Volumen 76, 2017 Volumen 75, 2016 Volumen 74, 2015 Volumen 73, 2014 Volumen 72, 2013 Volumen 71, 2012 Volumen 70, 2011 Volumen 69, 2010 Volumen 68, 2009 Volumen 67, 2008 Volumen 66, 2007 Volumen 65, 2006 Volumen 64, 2005 Volumen 63, 2005 Volumen 62, 2004 Volumen 61, 2004 Volumen 60, 2003 Volumen 59, 2003 Volumen 58, 2002 Volumen 57, 2002 Volumen 56, 2001 Volumen 55, 2001 Volumen 54, 2000 Volumen 53, 1999 Volumen 52, 1998 Volumen 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v56.i4-5.140
14 pages

Adaptive Filtering Based on Subband Decomposition

Hector Manuel Perez-Meana
National Polytechnic Institute of Mexico
Mariko Nakano Miyatake
Graduate School The National Polytechnic Institute of Mexico
Luis Nino-de-Rivera
SEPI ESIME Culhuacan, National Polytechnic Institute (IPN), Av. Santa Ana No. 1000, C.P. 04430 Mexico D.F. MEXICO

SINOPSIS

One important approach to reduce the computational complexity of adaptive filters is that based on subband decomposition, in which the input signals are represented in terms of a set of N near orthogonal signal components using an orthogonal transformation. This is because the representation allows processing schemes in which each of these orthogonal signal components are independently processed. In this paper we present FIR and IIR adaptive filter structures based on subband decomposition in which the input signals are splite in a set of decomposition in which the input signals are split in a set of orthogonal signal components. A reduced order adaptive filter is then inserted in each subband, whose coefficients are independently updated. The computer simulation results show that the both types of subband adaptive filter structures reduce computational complexity considerably, and have fairly good convergence property.


Articles with similar content:

Multibody Mass Matrix Sensitivity Analysis Using Spatial Operators
International Journal for Multiscale Computational Engineering, Vol.1, 2003, issue 2&3
Guillermo Rodriguez, Abhinandan Jain
Component Spectral Analysis of Signals with a Stochastic Repetition
Journal of Automation and Information Sciences, Vol.30, 1998, issue 2-3
I. Yu. Isaev, I. N. Yavorskii
PHASE FUNCTION ESTIMATION IN NATURAL WATERS USING DISCRETE ORDINATES METHOD AND MAXIMUM ENTROPY PRINCIPLE
Hybrid Methods in Engineering, Vol.2, 2000, issue 4
J. C. R. Claeyssen, E. S. Chalhoub, Haroldo F. de Campos Velho, Fernando Manuel Ramos
SURROGATE MODELING OF STOCHASTIC FUNCTIONS−APPLICATION TO COMPUTATIONAL ELECTROMAGNETIC DOSIMETRY
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 4
Soumaya Azzi, Bruno Sudret, Yuanyuan Huang, Joe Wiart
The Application of the Permutation Filters for Adaptive Digital Quadratic Detector
Telecommunications and Radio Engineering, Vol.56, 2001, issue 4&5
Olga Lebedeva, Victor Golikov, Jose Luis Orta