Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Telecommunications and Radio Engineering
SJR: 0.203 SNIP: 0.44 CiteScore™: 1

ISSN Imprimir: 0040-2508
ISSN En Línea: 1943-6009

Volumes:
Volumen 79, 2020 Volumen 78, 2019 Volumen 77, 2018 Volumen 76, 2017 Volumen 75, 2016 Volumen 74, 2015 Volumen 73, 2014 Volumen 72, 2013 Volumen 71, 2012 Volumen 70, 2011 Volumen 69, 2010 Volumen 68, 2009 Volumen 67, 2008 Volumen 66, 2007 Volumen 65, 2006 Volumen 64, 2005 Volumen 63, 2005 Volumen 62, 2004 Volumen 61, 2004 Volumen 60, 2003 Volumen 59, 2003 Volumen 58, 2002 Volumen 57, 2002 Volumen 56, 2001 Volumen 55, 2001 Volumen 54, 2000 Volumen 53, 1999 Volumen 52, 1998 Volumen 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v54.i4.80
pages 68-79

Nonlinear and Kinetic Effects in the Propagation of an Intense Electromagnetic Pulse Through the Atmosphere

A. I. Golubev
Russian Federal Nuclear Center All-Russian Scientific Research Institute of Experimental Physics, Sarov, 607190, Russia
M. D. Kamchibekov
Russian Federal Nuclear Center All-Russian Scientific Research Institute of Experimental Physics, Sarov, 607190, Russia
A. V. Soldatov
Russian Federal Nuclear Center All-Russian Scientific Research Institute of Experimental Physics, Sarov, 607190, Russia
T. G. Sysoeva
Russian Federal Nuclear Center All-Russian Scientific Research Institute of Experimental Physics, Sarov, 607190, Russia
V. A. Terekhin
Russian Federal Nuclear Center All-Russian Scientific Research Institute of Experimental Physics, Sarov, 607190, Russia
V. T. Tikhonchuk
P.N.Lebedev Physics Institute, Russian Academy of Science, Moscow, 117925, Russia

SINOPSIS

Kinetic models are derived for the description of intense electromagnetic pulse propagation through the Earth's atmosphere. The first, full model is based on a self-consistent solution to the set of Maxwell's equations coupled with the Boltzmann equation for free electrons in a two-polynomial approximation. The second, reduced model is based on the envelope approximation and is applied to quasi-monochromatic pulses. The capabilities and accuracy of both models are illustrated in several examples. In particular, we discuss the evolution of the pulse shape due to its absorption in the atmosphere and the evolution of the electron distribution function.


Articles with similar content:

MONTE CARLO SIMULATION OF LIGHT SCATTERING BY INHOMOGENEOUS SPHERES
ICHMT DIGITAL LIBRARY ONLINE, Vol.6, 1997, issue
Gerhard Gobel, Thomas Wriedt, Andreas Lippek, Klaus Bauckhage
MEASUREMENT OF ELASTIC LIGHT SCATTERING FROM A GAUSSIAN LASER BEAM
ICLASS 94
Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems, Vol.0, 1994, issue
J.T. Hodges, Gerard Grehan, G. Gouesbet, Cary Presser
MODELLING THE FAR-FIELD ACOUSTIC EMISSION OF ROTATING TURBULENCE
TSFP DIGITAL LIBRARY ONLINE, Vol.5, 2007, issue
Claude Cambon, Fabien S. Godeferd , Benjamin Favier
NEAR-FIELD SCATTERING OF WAVES FROM A STATISTICALLY ROUGH SURFACE: II. AVERAGE INTENSITY AND FREQUENCY SPECTRUM OF FIELD FLUCTUATIONS
Radio Physics and Radio Astronomy, Vol.1, 2010, issue 1
A. S. Bryukhovetsky
DETERMINATION OF NANOWIRE THERMAL CONDUCTIVITY BY SOLVING THE PHONON BOLTZMANN TRANSPORT EQUATION
ICHMT DIGITAL LIBRARY ONLINE, Vol.15, 2001, issue
Sebastian Volz, Denis Lemonnier