Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Journal of Environmental Pathology, Toxicology and Oncology
Factor de Impacto: 1.241 Factor de Impacto de 5 años: 1.349 SJR: 0.356 SNIP: 0.613 CiteScore™: 1.61

ISSN Imprimir: 0731-8898
ISSN En Línea: 2162-6537

Journal of Environmental Pathology, Toxicology and Oncology

DOI: 10.1615/JEnvironPatholToxicolOncol.2015011778
pages 11-21

The Influence of Gingerol Treatment on Aluminum Toxicity in Rats

Sadhana Shrivastava
Reproductive Biology and Toxicology Labora¬tory, UNESCO Satellite Center of Trace Element Research, School of Studies in Zoology, Jiwaji University, Gwalior 474011, India

SINOPSIS

Background: Ginger is widely used as a medicine in the Ayurvedic system. It contains the active compound gingerol, which scavenges free radicals. Prolonged intake of aluminum (Al) in drinking water and from other sources may lead to neurological, renal, and hepatic dysfunction. Objective: The present study was designed to evaluate the protective effect of gingerol, an active principal of ginger against aluminum as Al (NO3)3 -induced toxicity in rats. Methods: Al (NO3)3 at 32.5 mg/kg body weight was administered to female albino rats intraperitoneally once only, followed by treatment with gingerol at 25, 50, and 100 mg/kg p.o. for 3 consecutive days beginning 24 h after Al exposure. Animals of all of the groups were sacrificed after 48 h of the last gingerol treatment for experimental observations. Results: Significant elevations were observed in serum tranaminases, cholesterol, triglyceride, creatinine, urea, and blood δ-aminolevulinic acid dehydratase (ALAD) after Al exposure. In liver, kidney, and brain tissues, the thiobarbituric acid reactive substances (TBARS) level and total and esterified cholesterol were significantly increased, whereas glutathione (GSH), acetyl cholinesterase (AChE), and δ-aminolevulinic acid synthetase (ALAS) were significantly decreased. Treatment of gingerol for 3 days surprisingly reversed almost all of the biochemical variables toward control levels in a significant manner. Conclusion: Treatment with gingerol (50 mg/kg body weight) was most effective in coping with aluminum-induced toxicity in rats. The antioxidant activity of gingerol might be due not only to the radical scavenging activity of antioxidants but also to the affinity of these antioxidants to the substrates.


Articles with similar content:

Reversal of Lead-Induced Toxicity Due to the Effect of Antioxidants
Journal of Environmental Pathology, Toxicology and Oncology, Vol.32, 2013, issue 2
Sadhana Shrivastava, Samta Sharma, Sangeeta Shukla
Effect of Ginkgo biloba Extract on Lead-Induced Oxidative Stress in Different Regions of Rat Brain
Journal of Environmental Pathology, Toxicology and Oncology, Vol.34, 2015, issue 2
Prabhakara Rao Yallapragada, Manoj Kumar Velaga
Dose-Dependent Effects of Ethanol on Lead-Induced Oxidative Stress in Rats
Journal of Environmental Pathology, Toxicology and Oncology, Vol.31, 2012, issue 1
Swaran Flora, Pratibha Gautam, Nidhi Dwivedi
Antioxidant and Hepatoprotective Effects of Crataegus songarica Methanol Extract
Journal of Environmental Pathology, Toxicology and Oncology, Vol.33, 2014, issue 2
Akbar Masood, Ovais Zargar, Mohammad Afzal Zargar, Showkat Ahmad Ganie, Shajrul Amin, Parvaiz Ahmad Dar, Shayaq Ul Abeer, Rabia Hamid, Tanveer Ali Dar, Bilal Zargar
Protective Effects of Extract from Sclerotium of the King Tuber Medicinal Mushroom, Pleurotus tuberregium (Higher Basidiomycetes) on Carbon Tetrachloride-Induced Hepatotoxicity in Wistar Albino Rats
International Journal of Medicinal Mushrooms, Vol.17, 2015, issue 12
Christopher C. Osubor, Chidube A. Alagbaoso, Omoanghe S. Isikhuemhen