Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.28 SNIP: 0.421 CiteScore™: 0.9

ISSN Imprimir: 2150-766X
ISSN En Línea: 2150-7678

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.2012001456
pages 97-106

GLYCIDYL AZIDE POLYMER AND POLYETHYLENE GLYCOL MIXTURES AS HYBRID ROCKET FUELS

Keiichi Hori
Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo-Ku, Sagamihara, Kanagawa 252-5210, Japan
Yuya Nomura
Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1, Yoshinodai, Sagamihara, Kanagawa, 229-8510, Japan
Koji Fujisato
Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo-Ku, Sagamihara, Kanagawa 252-5210, Japan
Takeshi Yagishita
Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1, Yoshinodai, Sagamihara, Kanagawa, 229-8510, Japan
Makihito Nishioka
University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
Yutaka Wada
Akita University, 1-1, Tegata, Gakuen-machi, Akita City, Akita, 010-8502, Japan
Motoyasu Kimura
NOF Corporation, Yebisu Garden Place Tower, 20-3, Ebisu 4-chome, Shibuya-ku, Tokyo, 150-6019, Japan

SINOPSIS

Two types of hybrid rocket motors that use mixtures of glycidyl azide polymer (GAP) and polyethelene glycol (PEG) as the solid fuel are proposed and the combustion characteristics are presented. GAP and PEG mixtures in which the PEG concentrations are lower than a critical value between 40 and 50 mass% can sustain self-combustibility and can be used as a solid fuel for gas hybrid rocket systems, while mixtures with higher PEG concentrations and without self-combustibility can be employed as a solid fuel for traditional hybrid rockets. Thrust control and tailoring using changes in both the oxidizer/fuel (O/F) ratio and grain composition were investigated for the gas hybrid system, and successful control was accomplished in experiments. Firing tests were conducted of a traditional hybrid rocket motor as functions of the oxygen mass flux and burning pressure. The effect of GAP is obvious, and GAP enhances the regression rates of the solid fuel grain, and an effect of pressure was also found. The distributed flame model is discussed briefly here to explain the regression rate increase by GAP.


Articles with similar content:

COMBUSTION AND PERFORMANCE STUDIES OF GLYCIDYL AZIDE POLYMER AND ITS MIXTURES AS HYBRID ROCKET FUEL
International Journal of Energetic Materials and Chemical Propulsion, Vol.14, 2015, issue 3
Motoyasu Kimura, Hideo Nakayama, Akshay Garg, Po-Jul Chang, Keiichi Hori, Yutaka Wada
MODIFIED BURNING RATE SPECTRUM & COMBUSTION MECHANISM OFTETRA-OLGAP
International Journal of Energetic Materials and Chemical Propulsion, Vol.6, 2007, issue 2
Kiyokazu Kobayashi, Yasushi Niimi, Makihito Nishioka, Sumito Togo, Keiichi Hori, Yoshio Seike, Toru Shimada
POLYNIMMO, A CANDIDATE BINDER FOR SOLID FUEL GAS GENERATOR PROPELLANTS
International Journal of Energetic Materials and Chemical Propulsion, Vol.4, 1997, issue 1-6
A. V. Cunliffe, P. J. Honey, D. A. Tod, D. W. Anderson, G. A. Spinks
STATIC FIRING TESTS OF ALUMINUM-WATER PROPELLANT MOTORS CONTAINING V-ALEX NANOPOWDERS
International Journal of Energetic Materials and Chemical Propulsion, Vol.18, 2019, issue 3
Shahar Wollmark, Yinon Yavor
INVESTIGATION OF SOLID OXIDIZER AND GASEOUS FUEL COMBUSTION PERFORMANCE USING AN ELEVATED PRESSURE COUNTERFLOW EXPERIMENT FOR REVERSE HYBRID ROCKET ENGINE
International Journal of Energetic Materials and Chemical Propulsion, Vol.11, 2012, issue 6
Grant A. Risha, Terrence L. Connell, Jr., Reed H. Johansson, Gregory Young, Richard A. Yetter