Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.149 SNIP: 0.16 CiteScore™: 0.29

ISSN Imprimir: 2150-766X
ISSN En Línea: 2150-7678

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.v9.i3.50
pages 249-266

COMBUSTION OF ALANE-BASED SOLID FUELS

Gregory Young
Research and Development Department, Naval Surface Warfare Center − Indian Head Division, Indian Head, Maryland 20640, USA
Grant A. Risha
The Pennsylvania State University-Altoona, Altoona, Pennsylvania 16601, USA
Amber G. Miller
Pennsylvania State University, Altoona College, Division of Business and Engineering, Altoona, Pennsylvania 16601, USA
Russell A. Glass
Pennsylvania State University, Altoona College, Division of Business and Engineering, Altoona, Pennsylvania 16601, USA
Terrence L. Connell, Jr.
Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Richard A. Yetter
The Pennsylvania State University, University Park, Pennsylvania 16802, USA

SINOPSIS

In this study the combustion behavior of solid fuels loaded with micron-sized aluminum, nanoaluminum, and aluminum hydride with loadings of 10, 20, and 40 mass % are compared directly using pure oxygen as the oxidizer. An opposed flow burner was used to screen the various fuels at various oxidizer flow rates. Regression rates were gathered over oxidizer impingement velocities ranging from approximately 40 to 160 cm/s (strain rates of 80-320 s−1). Fuels loaded with aluminum hydride were found to have regression rates comparable to or better than that of the baseline hydroxyl terminated polybutadiene (HTPB) fuel. In addition, the regression rate increased with increasing aluminum hydride content. Conversely, the regression rates of fuels loaded with micron-sized aluminum were found to decrease with increasing aluminum content. Emission spectroscopy revealed that under most conditions the aluminum in the fuels loaded with micron-sized aluminum did not ignite within the immediate vicinity of the solid fuel sample. Temperature measurements determined from thermal emission support this conclusion as well. Finally, a lab-scale hybrid rocket motor was used to compare the combustion performance of the fuels relative to each other. It was found for the same oxidizer mass flow rate, pressure and thrust were highest for alanized fuels. Data included were thrust, pressure, regression rate, and mass burning rate.


Articles with similar content:

SURFACE HEAT RELEASE OF HTPB-BASED FUELS IN OXYGEN RICH ENVIRONMENTS
International Journal of Energetic Materials and Chemical Propulsion, Vol.5, 2002, issue 1-6
H. Stephen Jones, Grant A. Risha, George C. Harting, Joseph P. Arves, Arie Peretz, Donald E. Koch
EXPERIMENTAL INVESTIGATION OF METALIZED SOLID FUEL RAMJET COMBUSTOR
International Journal of Energetic Materials and Chemical Propulsion, Vol.11, 2012, issue 2
Alon Gany, Shimon Saraf
EFFECT OF MAGNESIUM-COATED BORON PARTICLES ON BURNING CHARACTERISTICS OF SOLID FUELS IN HIGH-SPEED CROSSFLOWS
International Journal of Energetic Materials and Chemical Propulsion, Vol.2, 1993, issue 1-6
Vigor Yang, K. K. Pace, T. A. Jarymowycz
COMBUSTION BEHAVIOUR INVESTIGATION OF SOLID FUELS USING A MICRO-SIZED HYBRID ROCKET MOTOR
International Journal of Energetic Materials and Chemical Propulsion, Vol.7, 2008, issue 3
Luciano Galfetti, Paolo Grassi, Christian Paravan, Luigi Pietro Maria Colombo, Viviana Luoni
COMBUSTION AND PERFORMANCE STUDIES OF GLYCIDYL AZIDE POLYMER AND ITS MIXTURES AS HYBRID ROCKET FUEL
International Journal of Energetic Materials and Chemical Propulsion, Vol.14, 2015, issue 3
Motoyasu Kimura, Hideo Nakayama, Akshay Garg, Po-Jul Chang, Keiichi Hori, Yutaka Wada