Suscripción a Biblioteca: Guest
International Journal of Energetic Materials and Chemical Propulsion

Publicado 6 números por año

ISSN Imprimir: 2150-766X

ISSN En Línea: 2150-7678

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 0.7 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00016 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.18 SJR: 0.313 SNIP: 0.6 CiteScore™:: 1.6 H-Index: 16

Indexed in

THE PRESSURE SENSITIVITY OF THE ULTRASONIC WAVES VELOCITY: A CONTRIBUTION TO A BETTER DETERMINATION OF THE ENERGETIC MATERIAL REGRESSION RATE

Volumen 6, Edición 6, 2007, pp. 749-774
DOI: 10.1615/IntJEnergeticMaterialsChemProp.v6.i6.60
Get accessGet access

SINOPSIS

Experimental methods based on ultrasound waves propagation have been applied to the determination of either the burning or the degradation rate of the energetic materials used in solid or hybrid propulsion systems. These techniques are non-intrusive and can be used under realistic conditions. Their working principle relies on the measurement of the Time Of Flight (TOF) of the mechanical waves travelling through the tested material(s), which is influenced by both pressure and temperature effect on the wave velocity. The goal of this paper is to focus on the pressure effect only, by comparing the published data and the relative analyses, presenting the authors point of view and, possibly, suggesting the most acceptable approach to account for this effect. This aspect represents an important challenge because the confidence level in the energetic material regression rate value, deduced from the TOF measurement, is directly related to the values of the pressure sensitivity of the wave velocity. The mechanical behavior of the energetic material is, then, the key point. Examples of applications, such as those to a classical composite solid propellant and to a Hydroxyl Terminated PolyButadiene (HTPB) fuel grain in hybrid motors, illustrate and feed the discussion.

CITADO POR
  1. Carmicino C., Russo Sorge A., Experimental Investigation into the Effect of Solid-Fuel Additives on Hybrid Rocket Performance, Journal of Propulsion and Power, 31, 2, 2015. Crossref

  2. Atak Özen, Ziraman Berkan, Yumusak Mine, Comparison of Solid Propellant Burning Rate Determination Methods from Industrial Point of View, 52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016. Crossref

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain