Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Journal of Automation and Information Sciences
SJR: 0.232 SNIP: 0.464 CiteScore™: 0.27

ISSN Imprimir: 1064-2315
ISSN En Línea: 2163-9337

Volumes:
Volumen 51, 2019 Volumen 50, 2018 Volumen 49, 2017 Volumen 48, 2016 Volumen 47, 2015 Volumen 46, 2014 Volumen 45, 2013 Volumen 44, 2012 Volumen 43, 2011 Volumen 42, 2010 Volumen 41, 2009 Volumen 40, 2008 Volumen 39, 2007 Volumen 38, 2006 Volumen 37, 2005 Volumen 36, 2004 Volumen 35, 2003 Volumen 34, 2002 Volumen 33, 2001 Volumen 32, 2000 Volumen 31, 1999 Volumen 30, 1998 Volumen 29, 1997 Volumen 28, 1996

Journal of Automation and Information Sciences

DOI: 10.1615/JAutomatInfScien.v46.i2.30
pages 27-41

Stability and Effective Algorithms for Solving Multiobjective Discrete Optimization Problems with Incomplete Information

Vladimir A. Emelichev
Byelorussian State University, Minsk
Vladimir M. Kotov
Byelorussian State University, Minsk
Kirill G. Kuzmin
Byelorussian State University, Minsk
Tatyana T. Lebedeva
V.M. Glushkov Institute of Cybernetics of National Academy of Sciences of Ukraine, Kiev
Natalya V. Semenova
V.M. Glushkov Institute of Cybernetics of National Academy of Sciences of Ukraine, Kiev
Tatyana I. Sergienko
V.M. Glushkov Institute of Cybernetics of National Academy of Sciences of Ukraine, Kiev

SINOPSIS

The stability problem of vector discrete optimization problems with different principles of optimality with respect to perturbations of all input data of the problem is investigated based on the obtained results on the stability kernel property and the subset of those feasible solutions which steadily do not belong to the optimum set. We present the review of the latest results concerning the estimations of stability radius of solutions of Boolean multicriteria problems with nonlinear criteria. For the problem with the known optimum value of the goal function there is constructed the algorithm with the best known guaranteed estimation. The described scheme applied group technologies and dynamic lower estimations for the optimum value of the objective functional which can be used in various versions of problems with incomplete information.