Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Journal of Automation and Information Sciences
SJR: 0.275 SNIP: 0.59 CiteScore™: 0.8

ISSN Imprimir: 1064-2315
ISSN En Línea: 2163-9337

Volumes:
Volumen 52, 2020 Volumen 51, 2019 Volumen 50, 2018 Volumen 49, 2017 Volumen 48, 2016 Volumen 47, 2015 Volumen 46, 2014 Volumen 45, 2013 Volumen 44, 2012 Volumen 43, 2011 Volumen 42, 2010 Volumen 41, 2009 Volumen 40, 2008 Volumen 39, 2007 Volumen 38, 2006 Volumen 37, 2005 Volumen 36, 2004 Volumen 35, 2003 Volumen 34, 2002 Volumen 33, 2001 Volumen 32, 2000 Volumen 31, 1999 Volumen 30, 1998 Volumen 29, 1997 Volumen 28, 1996

Journal of Automation and Information Sciences

DOI: 10.1615/J Automat Inf Scien.v38.i11.60
pages 56-73

Complexity of Bayesian Procedure of Inductive Inference. Discrete Case

Boris A. Beletskiy
V.M. Glushkov Institute of Cybernetics of National Academy of Sciences of Ukraine, Kiev, Ukraine
Alexandra A. Vagis
V.M. Glushkov Institute of Cybernetics of National Academy of Sciences of Ukraine, Kiev, Ukraine
Sergey V. Vasilyev
V.M. Glushkov Institute of Cybernetics of National Academy of Sciences of Ukraine, Kiev, Ukraine
Nikita A. Gupal
V.M. Glushkov Institute of Cybernetics of National Academy of Sciences of Ukraine, Kiev

SINOPSIS

Behavior of inductive procedures depending on content of learning sampling is studied. We demonstrate, that if the learning sampling contains no information about some class of objects or statistical information about a priori probabilities of classes, then any procedure works badly and its error is strictly positive. An estimate of error of Bayesian recognition procedure depending on size of learning sampling and other parameters is derived. Suboptimality of Bayesian approach is proved, complexity of class of problems is assessed.


Articles with similar content:

Low-Rank Quadratic Detector of Random Signals in Unknown Correlated Clutter
Telecommunications and Radio Engineering, Vol.67, 2008, issue 18
Olga Lebedeva, Victor Golikov
DEVELOPING A METHOD FOR IDENTIFICATION OF INTEGRAL NONLINEAR MODELS OF VISCOELASTIC MEDIA BASED ON A NONLINEAR DAMPING FUNCTION
Composites: Mechanics, Computations, Applications: An International Journal, Vol.4, 2013, issue 1
Yu. A. Basistov, Yuri G. Yanovsky
On Scalarization of a Class of Vector Optimization Problems in the Banach Spaces
Journal of Automation and Information Sciences, Vol.40, 2008, issue 12
Igor V. Nechay, Peter I. Kogut
STATISTICAL SURROGATE MODELS FOR PREDICTION OF HIGH-CONSEQUENCE CLIMATE CHANGE
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 4
Richard V. Field Jr., Paul Constantine, M. Boslough
Method of Critical Variances as Analytical Tool of Theory of Inductive Modeling
Journal of Automation and Information Sciences, Vol.40, 2008, issue 3
Vladimir S. Stepashko