Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Journal of Automation and Information Sciences
SJR: 0.238 SNIP: 0.464 CiteScore™: 0.27

ISSN Imprimir: 1064-2315
ISSN En Línea: 2163-9337

Volumes:
Volumen 51, 2019 Volumen 50, 2018 Volumen 49, 2017 Volumen 48, 2016 Volumen 47, 2015 Volumen 46, 2014 Volumen 45, 2013 Volumen 44, 2012 Volumen 43, 2011 Volumen 42, 2010 Volumen 41, 2009 Volumen 40, 2008 Volumen 39, 2007 Volumen 38, 2006 Volumen 37, 2005 Volumen 36, 2004 Volumen 35, 2003 Volumen 34, 2002 Volumen 33, 2001 Volumen 32, 2000 Volumen 31, 1999 Volumen 30, 1998 Volumen 29, 1997 Volumen 28, 1996

Journal of Automation and Information Sciences

DOI: 10.1615/JAutomatInfScien.v46.i7.30
pages 28-39

Optimal Boundary Control Problem Solution for Inhomogeneous Biharmonic Equations

Elena M. Kiseleva
Oles Honchar Dnipro National University, Dnepr
Lyubov V. Voloshko
Oles Honchar Dnepropetrovsk National University

SINOPSIS

Consideration is given to the optimal boundary control problem for inhomogeneous biharmonic equation to be solved by one of the gradient methods. By means of the potential method the linear problem is reduced to the system of Fredgolm integral equations of the first kind. The effectiveness of the algorithm is confirmed by high accuracy of obtained calculations results.

REFERENCIAS

  1. Kiseleva E.M., Koryashkina L.S. , Models and methods for solving continuous problems of sets optimal partition: linear, nonlinear, dynamic problems [in Russian].

  2. Vasiliev F.P. , Numerical methods for extreme problem solution [in Russian].

  3. Sergienko I.V., Deineka V.S. , Identification of thermoelasticity problems parameters under nonstationary temperature field.

  4. Tikhonov A.N., Samarskiy A.A. , Equations of mathematical physics [in Russian].

  5. Arsenin V.Ya. , Methods of mathematical physics and special functions [in Russian].

  6. Kiseleva O.M., Lamzyuk V.D., Voloshko L.V. , On solution of boundary value problem for inhomogeneous biharmonic equation for domain of complex form.

  7. Boborykin V.G. , Green functions for clamped Kirchhoff plate of arbitrary contour.

  8. Timoshenko S.P., Voynovskiy-Kriger S. , Plates and frames [in Russian].


Articles with similar content:

Control Problem with Non-Separated Multipoint and Integral Conditions
Journal of Automation and Information Sciences, Vol.45, 2013, issue 3
Vagif Maarif oglu Abdullayev, Kamil Rajab ogly Aida-zade
ASYMPTOTIC FORMULAS FOR SOME NON-LINEAR INTEGR0-DIFFERENTIAL TRANSFER PROBLEMS
International Heat Transfer Conference 5, Vol.3, 1974, issue
A. B. Bartman, T. L. Perelman
A SEMI-ANALYTICAL METHOD FOR SOLVING INVERSE PROBLEMS OF WAVE DIFFRACTION BY INHOMOGENEOUS LAYERS
Telecommunications and Radio Engineering, Vol.74, 2015, issue 11
A. V. Brovenko, N. P. Melezhik, A.Yu. Poyedinchuk, Alexey A. Vertiy, P. N. Melezhik
Numerical Investigation of Dynamic Elastic Processes in the Solid State Wave Gyro by Means of Atomic Functions
Telecommunications and Radio Engineering, Vol.54, 2000, issue 11&12
Miklhail Alekseevich Basarab, Victor Filippovich Kravchenko, Valeriy Aleksandrovich Matveev
The Method of Main Coordinate in the Theory of Parametric Synthesis of the Linear Stabilized Systems
Journal of Automation and Information Sciences, Vol.49, 2017, issue 3
Tatyana Ye. Aleksandrova , Yevgeniy Ye. Aleksandrov