Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Critical Reviews™ in Immunology
Factor de Impacto: 1.352 Factor de Impacto de 5 años: 3.347 SJR: 0.657 SNIP: 0.55 CiteScore™: 2.19

ISSN Imprimir: 1040-8401
ISSN En Línea: 2162-6472

Volumen 39, 2019 Volumen 38, 2018 Volumen 37, 2017 Volumen 36, 2016 Volumen 35, 2015 Volumen 34, 2014 Volumen 33, 2013 Volumen 32, 2012 Volumen 31, 2011 Volumen 30, 2010 Volumen 29, 2009 Volumen 28, 2008 Volumen 27, 2007 Volumen 26, 2006 Volumen 25, 2005 Volumen 24, 2004 Volumen 23, 2003 Volumen 22, 2002 Volumen 21, 2001 Volumen 20, 2000 Volumen 19, 1999 Volumen 18, 1998 Volumen 17, 1997 Volumen 16, 1996 Volumen 15, 1995 Volumen 14, 1994

Critical Reviews™ in Immunology

DOI: 10.1615/CritRevImmunol.v37.i2-6.70
pages 315-339

Microbial Products and Cytokines in Sleep and Fever Regulation

James M. Krueger
Department of Physiology and Biophysics, University of Tennessee, Memphis, 894 Union Avenue, Memphis, TN 38163
Jeannine A. Majde
Office of Naval Research, Arlington, VA 22217


Excessive sleepiness and fever are constitutional symptoms associated with systemic infection. Although fevers have been investigated for many years, sleep responses to infectious challenge have only recently been investigated. Inoculation of animals with bacterial, viral, protozoan and fungal organisms result in complex sleep responses dependent upon the microbial agent and route of administration. The general pattern is characterized by an initial robust increase in non-rapid eye movement sleep (NREMS) followed by a period of NREMS inhibition. REMS is inhibited after infectious challenge. The sleep responses are accompanied by fever but the two responses are, in part, independent from each other. Sleep responses, like fevers, may be beneficial to host defense although this area is relatively uninvestigated. Microbial products likely responsible for sleep and fever responses include bacterial muramyl peptides and endotoxin, and viral double stranded RNA. These microbial products induce sleep and fever responses in animal models. The exact mechanism of how these structurally diverse microbial products elicit sleep and fever remain unknown; however these substances share the ability to induce cytokine production. Cytokines such as interleukin-1 (IL-1), tumor necrosis factor, acidic fibroblast growth factor (FGF), and interferon-α (IFN-α) are somnogenic whether given directly into brain or intravenously. Other cytokines lack somnogenic activity, e.g., IL-2, IL-6, IFNβ and basic FGF. The somnogenic actions of cytokines probably involve growth hormone-releasing hormone (GHRH) and nitric oxide. Anti-GHRH or inhibition of NO production inhibits normal sleep and inhibits IL-1-induced sleep. In conclusion, cytokines are likely key mediators of fever and sleep responses to infection. The microbial-cytokine altered sleep likely results from an amplification of physiological sleep mechanisms which include cytokines, several neuropeptides and neurotransmitters such as nitric oxide.

Articles with similar content:

Microbial Products and Cytokines in Sleep and Fever Regulation
Critical Reviews™ in Immunology, Vol.14, 1994, issue 3-4
Jeannine A. Majde, James M. Krueger
Role of Inflammation Amplifier-Induced Growth Factor Expression in the Development of Inflammatory Diseases
Critical Reviews™ in Immunology, Vol.35, 2015, issue 5
Yasunobu Arima, Daisuke Kamimura, Masaaki Murakami, Toru Atsumi, Ikuma Nakagawa
Dimethyl Fumarate Modulation of Immune and Antioxidant Responses: Application to HIV Therapy
Critical Reviews™ in Immunology, Vol.33, 2013, issue 4
Alexander J. Gill , Dennis L. Kolson
The Role of Toll-like Receptors in Regulating the Immune Response against Respiratory Syncytial Virus
Critical Reviews™ in Immunology, Vol.29, 2009, issue 6
Frank Coenjaerts, Grada M. van Bleek, Lydia Tan, Peter Klein Klouwenberg, Wendy Werkman
Immunomodulatory Activities of Mushroom Glucans and Polysaccharide–Protein Complexes in Animals and Humans (A Review)
International Journal of Medicinal Mushrooms, Vol.5, 2003, issue 2
Richard Sullivan, John E. Smith, Neil J. Rowan