Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Critical Reviews™ in Immunology
Factor de Impacto: 1.352 Factor de Impacto de 5 años: 3.347 SJR: 0.657 SNIP: 0.55 CiteScore™: 2.19

ISSN Imprimir: 1040-8401
ISSN En Línea: 2162-6472

Volumen 40, 2020 Volumen 39, 2019 Volumen 38, 2018 Volumen 37, 2017 Volumen 36, 2016 Volumen 35, 2015 Volumen 34, 2014 Volumen 33, 2013 Volumen 32, 2012 Volumen 31, 2011 Volumen 30, 2010 Volumen 29, 2009 Volumen 28, 2008 Volumen 27, 2007 Volumen 26, 2006 Volumen 25, 2005 Volumen 24, 2004 Volumen 23, 2003 Volumen 22, 2002 Volumen 21, 2001 Volumen 20, 2000 Volumen 19, 1999 Volumen 18, 1998 Volumen 17, 1997 Volumen 16, 1996 Volumen 15, 1995 Volumen 14, 1994

Critical Reviews™ in Immunology

DOI: 10.1615/CritRevImmunol.v17.i1.40
pages 89-118

Accessory Molecule and Costimulation Requirements for CD4 T Cell Response

Michael Croft
Department of Biology and the Cancer Center, University of California San Diego, La Jolla, CA 92093
Caroline Dubey
Department of Biology and the Cancer Center, University of California San Diego, La Jolla, CA 92093


T cell activation is brought about by recognition of peptide/MHC complexes on an antigen-presenting cell (APC) by the T cell receptor (TCR). However, in general this appears to be insufficient for the full development of T cell responses and therefore additional signals are required, provided by ligation of counter-receptors on the T cell by APC accessory molecules. Although many studies have suggested that B7 molecules (CD80/CD86) binding to CD28 induce this second signal, it is now evident that any one of a number of molecules may provide accessory function and that efficient response is only generated following multiple interactions. It has also become clear that T cells exist in varying states of activation or differentiation, and that requirements for accessory molecules and costimuli are not always equivalent. This review covers much of the recent data regarding accessory molecule regulation of T cell responses. A modified version of the two signal model is presented, suggesting that the major function of accessory molecules during the initial stages of activation is to augment the ability to signal through the TCR, and that the primary role of costimulatory signals is to allow IL-2 secretion and growth. The requirement for multiple accessory molecule interactions is discussed in relation to activation of naive T cells and how such interactions are less critical at the memory and effector stages. Finally, this new information is related to how T cells interact with varying APC and how these interactions may modulate T cell response.