Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Critical Reviews™ in Therapeutic Drug Carrier Systems
Factor de Impacto: 2.9 Factor de Impacto de 5 años: 3.72 SJR: 0.736 SNIP: 0.551 CiteScore™: 2.43

ISSN Imprimir: 0743-4863
ISSN En Línea: 2162-660X

Volumes:
Volumen 36, 2019 Volumen 35, 2018 Volumen 34, 2017 Volumen 33, 2016 Volumen 32, 2015 Volumen 31, 2014 Volumen 30, 2013 Volumen 29, 2012 Volumen 28, 2011 Volumen 27, 2010 Volumen 26, 2009 Volumen 25, 2008 Volumen 24, 2007 Volumen 23, 2006 Volumen 22, 2005 Volumen 21, 2004 Volumen 20, 2003 Volumen 19, 2002 Volumen 18, 2001 Volumen 17, 2000 Volumen 16, 1999 Volumen 15, 1998 Volumen 14, 1997 Volumen 13, 1996 Volumen 12, 1995

Critical Reviews™ in Therapeutic Drug Carrier Systems

DOI: 10.1615/CritRevTherDrugCarrierSyst.v17.i4.30
48 pages

Targeted Gene Delivery: A Two-Pronged Approach

Khursheed Anwer
Expression Genetics, Inc., Huntsville, Alabama; and Valentis, Inc., 8301 New Trails Drive, The Woodlands, TX, USA
Austin Bailey
Valentis, Inc., 8301 New Trails Drive, The Woodlands, TX
Sean M. Sullivan
Valentis, Inc., 8301 New Trails Drive, The Woodlands, TX

SINOPSIS

The success of gene therapy relies on the ability of gene delivery systems to selectively deliver therapeutic genes to a sufficient number of target cells yielding expression levels that impact the diseased state. The gene delivery systems can be divided into two classes: viral and non-viral (or plasmid DNA-based). The present gene delivery technology being used in climes today can be considered first generation, in that they possess the ability to transfect or infect target cells through their inherent chemical, biochemical, and molecular biological properties. Relying on these sole properties, however, limits therapeutic applications. Expansion of therapeutic applications or increased effectiveness of current therapies can be achieved by increasing the number of cells and cell types susceptible to gene transfer. This can be achieved through physical targeting and molecular biological targeting. Physical targeting relies on the attachment to the delivery vehicle of ligands that bind to cell surface receptors unique to the target cells. Molecular biological targeting refers to selective expression of the therapeutic gene by the target cell through the use of selective promoters. Selective expression can be further achieved by the use of expression systems controlled by extrinsic induction molecules. This review will describe in detail the advances that have been made in each of these areas of gene targeting.