Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Critical Reviews™ in Therapeutic Drug Carrier Systems

Factor de Impacto: 5.367

ISSN Imprimir: 0743-4863
ISSN En Línea: 2162-660X

Volumes:
Volumen 34, 2017 Volumen 33, 2016 Volumen 32, 2015 Volumen 31, 2014 Volumen 30, 2013 Volumen 29, 2012 Volumen 28, 2011 Volumen 27, 2010 Volumen 26, 2009 Volumen 25, 2008 Volumen 24, 2007 Volumen 23, 2006 Volumen 22, 2005 Volumen 21, 2004 Volumen 20, 2003 Volumen 19, 2002 Volumen 18, 2001 Volumen 17, 2000 Volumen 16, 1999 Volumen 15, 1998 Volumen 14, 1997 Volumen 13, 1996 Volumen 12, 1995

Critical Reviews™ in Therapeutic Drug Carrier Systems

DOI: 10.1615/CritRevTherDrugCarrierSyst.2016015926
pages 401-432

Topotecan Liposomes: A Visit from a Molecular to a Therapeutic Platform

Shivani Saraf
Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Central University, Sagar (M.P.), India 470 003
Ankit Jain
Adina Institute of Pharmaceutical Sciences
Pooja Hurkat
Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Central University, Sagar (M.P.), India 470 003
Sanjay Kumar Jain
Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar (M.P.), India

SINOPSIS

Topotecan (TPT), a potent anticancer camptothecin analog, is well described for the treatment of ovarian cancer, but has also anticancer activity against small-cell and non-small-cell lung cancer, breast cancer, and acute leukemia. Various nanocarriers, including liposomes, have been exploited for targeted delivery of TPT. However, there are a number of challenges with TPT delivery using TPT liposomes (TLs), such as low encapsulation efficiency, physiological pH labile E ring (hydrolysis), accelerated blood clearance, multidrug resistance, and cancer metastases. This review discusses these problems and the means to overcome them, including modification of TLs using zwitterionic poly(carboxybetaine), prolongation in dosing interval (long-term therapy), and modified liposomal encapsulation techniques including active loading methods. We also explore engineered TLs (surface and integral modifications) such as PEGylated TLs, ligand-anchored TLs, and stimuli-sensitive TLs. Further, potential applications, manifestations at the molecular level, patents granted, and preclinical and clinical outlook for TLs are discussed.