Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Critical Reviews™ in Therapeutic Drug Carrier Systems
Factor de Impacto: 2.9 Factor de Impacto de 5 años: 3.72 SJR: 0.736 SNIP: 0.551 CiteScore™: 2.43

ISSN Imprimir: 0743-4863
ISSN En Línea: 2162-660X

Volumes:
Volumen 36, 2019 Volumen 35, 2018 Volumen 34, 2017 Volumen 33, 2016 Volumen 32, 2015 Volumen 31, 2014 Volumen 30, 2013 Volumen 29, 2012 Volumen 28, 2011 Volumen 27, 2010 Volumen 26, 2009 Volumen 25, 2008 Volumen 24, 2007 Volumen 23, 2006 Volumen 22, 2005 Volumen 21, 2004 Volumen 20, 2003 Volumen 19, 2002 Volumen 18, 2001 Volumen 17, 2000 Volumen 16, 1999 Volumen 15, 1998 Volumen 14, 1997 Volumen 13, 1996 Volumen 12, 1995

Critical Reviews™ in Therapeutic Drug Carrier Systems

DOI: 10.1615/CritRevTherDrugCarrierSyst.v14.i3.20
66 pages

A Human Colonic Cell Line Sharing Similarities With Enterocytes as a Model to Examine Oral Absorption: Advantages and Limitations of the Caco-2 Model

Florence Delie
Genentech, Inc., IDNA Way, South San Francisco, CA 94080
Werner Rubas
Genentech, Inc., IDNA Way, South San Francisco, CA 94080

SINOPSIS

Caco-2 cell monolayers mimic intestinal absorptive epithelium and represent a very useful tool for studying transepithelial transport. The literature on Caco-2 cells is controversial regarding transepithelial resistance and permeabilities of different marker compounds across monolayers. This paper discusses probable causes for these discrepancies. First, we present the role of culture conditions, such as the nature of the support or the passage number, on cell biology and transport properties. Further, we compare the presence of transport proteins in Caco-2 cells to mammalian intestinal tissue and discuss their implication for drug absorption. We also examine the advantages and disadvantages of systems such as Transwell® and side-by-side diffusion chambers. A summary of comparisons between permeabilities across Caco-2 monolayers and mammalian intestinal tissues is provided. We conclude that the origin of Caco-2 cells and the culture conditions are in part responsible for the discrepancies encountered in the literature.