Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Critical Reviews™ in Therapeutic Drug Carrier Systems
Factor de Impacto: 2.9 Factor de Impacto de 5 años: 3.72 SJR: 0.736 SNIP: 0.818 CiteScore™: 4.6

ISSN Imprimir: 0743-4863
ISSN En Línea: 2162-660X

Volumes:
Volumen 37, 2020 Volumen 36, 2019 Volumen 35, 2018 Volumen 34, 2017 Volumen 33, 2016 Volumen 32, 2015 Volumen 31, 2014 Volumen 30, 2013 Volumen 29, 2012 Volumen 28, 2011 Volumen 27, 2010 Volumen 26, 2009 Volumen 25, 2008 Volumen 24, 2007 Volumen 23, 2006 Volumen 22, 2005 Volumen 21, 2004 Volumen 20, 2003 Volumen 19, 2002 Volumen 18, 2001 Volumen 17, 2000 Volumen 16, 1999 Volumen 15, 1998 Volumen 14, 1997 Volumen 13, 1996 Volumen 12, 1995

Critical Reviews™ in Therapeutic Drug Carrier Systems

DOI: 10.1615/CritRevTherDrugCarrierSyst.v23.i6.10
pages 437-495

Recent Progress in Dendrimer-Based Nanocarriers

Shuhua Bai
Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
Chandan Thomas
Lake Erie College of Osteopathic Medicine School of Pharmacy
Amit Rawat
Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
Fakhrul Ahsan
Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, USA

SINOPSIS

A large number of drug delivery systems—mostly in the form of liposomes, microspheres, nanoparticles and hydrogels—have been designed to achieve targeted delivery and sustained release of drugs by exploiting the inherent properties of polymers. The size, shape, and surface properties of the polymer are used to modulate the pharmacokinetic and pharmacodynamic behavior of drugs conjugated with or encapsulated in the polymeric carrier. Recently, a class of well-defined, monodisperse, and tree-like polymers called dendrimers has attracted attention because of the flexibility they offer in terms of their size, shape, branching, length, and surface functionality. A unique characteristic of dendrimers is that they can act as a particulate system while retaining the properties of a polymer. Drugs and diagnostic agents can be encapsulated in the central core or bound to the surface of the dendrimer by noncovalent or covalent interaction. Dendritic polymers can significantly improve pharmacokinetic and pharmacodynamic properties of low molecular weight and protein-based therapeutic agents. Furthermore, fluorescent antibodies and imaging contrast agents can be bound to these new polymers and the resulting complexes can be used for analyzing biological fluids and for diagnosis. Because of their size, shape, and ability to conjugate with a wide range of chemical entities, dendrimers have found many applications in the pharmaceutical and biomedical sciences. This review focuses on the unique carrier properties of biomimetic dendrimers and discusses a wide range of applications of dendrimers in drug delivery, including their use as drug solubilizers, absorption enhancers, release modifiers, and carriers for targeting drugs and diagnostic agents.


Articles with similar content:

Pharmaceutical and Biomedical Potential of Surface Engineered Dendrimers
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.24, 2007, issue 3
Narendra Kumar Jain, Umesh Gupta, Jitendra Satija
Lipid-Based Cochleates: A Promising Formulation Platform for Oral and Parenteral Delivery of Therapeutic Agents
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.24, 2007, issue 1
Emilio Squillante, III, Kwon H. Kim, Ravi Rao
Peptide and Protein Delivery Using New Drug Delivery Systems
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.30, 2013, issue 4
Ashish Jain, Satish Shilpi, Pooja Hurkat, Aviral Jain, Arvind Gulbake, Sanjay Kumar Jain
Reassessment of Therapeutic Applications of Carbon Nanotubes: A Majestic and Futuristic Drug Carrier
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.37, 2020, issue 4
Aarif Ahsan, Bharti Mangla, Waquar Ahsan, Kanchan Kohli, Shamama Javed
Intranasal Delivery of Nanotherapeutics/ Nanobiotherapeutics for the Treatment of Alzheimer's Disease: A Proficient Approach
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.36, 2019, issue 5
Namdev L. Dhas, Tejal A. Mehta, Ritu R. Kudarha