Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Composites: Mechanics, Computations, Applications: An International Journal
ESCI SJR: 0.193 SNIP: 0.497 CiteScore™: 0.39

ISSN Imprimir: 2152-2057
ISSN En Línea: 2152-2073

Composites: Mechanics, Computations, Applications: An International Journal

DOI: 10.1615/CompMechComputApplIntJ.v6.i4.50
pages 321-338

PARTICLE SWARM OPTIMIZATION-BASED NEURAL NETWORK FOR PREDICTING FATIGUE STRENGTH IN COMPOSITE LAMINATES OF WIND TURBINE BLADES

Khaled Ziane
Laboratoire d'Ingénierie de la Sécurité Industrielle et du Développement Durable LISIDD, IMSI, Université d'Oran, B.P N°5, Route de l'aéroport 31000 Es-Sénia, Oran, Algérie
Soraya Zebirate
Laboratoire SCAMRE, ENPO; Laboratoire d'Ingénierie de la Sécurité Industrielle et du Développement Durable LISIDD, IMSI, Université d'Oran, B.P N°5, Route de l'aéroport 31000 Es-Sénia, Oran, Algérie
Adel Zaitri
Materials Science and Informatics Laboratory MSIL, University of Djelfa, P. BOX N°3117, Road of Moudjbara 17000, Djelfa, Algeria

SINOPSIS

In this paper, the fatigue strength in multidirectional (MD)/unidirectional (UD) composite laminates of wind turbine blades is predicted by using particle swarm optimization-based artificial neural networks (PSO-ANN). In the PSO-ANN approach used in this work, the objective function was assessed using the mean square error (MSE) computed as the squared difference between the predicted values and the target values for a number of training set samples. Different materials based on different reinforcing fabrics and resins are compared in terms of the maximum tensile fatigue stress. Tension–tension constant amplitude fatigue loads were applied to thermoset materials including glass-fiber/epoxy, polyester and vinyl esters. All materials were treated in closed molds with resin infusion process, which were molded into their final dogbone shape without machining. The results show that the PSO-ANN can provide accurate fatigue strength prediction for different MD/UD composite laminates under different values of fiber orientation.


Articles with similar content:

SIMULATIONS OF AIR PERMEABILITY OF MULTILAYER TEXTILES BY THE COMPUTATIONAL FLUID DYNAMICS
International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 6
Izabella Krucinska, Adam K. Puszkarz
PREDICTION OF THE MECHANICAL PROPERTIES OF COPPER POWDER-FILLED LOW-DENSITY POLYETHYLENE COMPOSITES. A COMPARISON BETWEEN THE ANN AND THEORETICAL MODELS
Composites: Mechanics, Computations, Applications: An International Journal, Vol.6, 2015, issue 1
P. K. Sharma, A. S. Luyt, Ramvir Singh, R. S. Bhoopal
VIBRATIONAL ANALYSIS OF HYBRID FABRIC-REINFORCED POLYMER MATRIX CURVED COMPOSITE BEAMS
Composites: Mechanics, Computations, Applications: An International Journal, Vol.9, 2018, issue 3
Kunj Jain, B. Santosh Kumar, S. Ayyappan, Gopalan Venkatachalam, S. Vimalanand
NUMERICAL SIMULATION OF TRANSIENT MOISTURE TRANSPORT FOR HYGROSCOPIC INERTIA ASSESSMENT
Journal of Porous Media, Vol.15, 2012, issue 8
J.M.P.Q. Delgado, V. P. de Freitas, Nuno M. M. Ramos, Angela Sacic Kalagasidis
BODDEE BUDDEE: Evaluation of Different Foams and Thermoplastics to Develop a Biofidelic Manikin for Cardiopulmonary Resuscitation
Critical Reviews™ in Biomedical Engineering, Vol.47, 2019, issue 2
Kathryn Douglass, Alex Walsh, Jeffrey T. La Belle