Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Critical Reviews™ in Oncogenesis
SJR: 0.631 SNIP: 0.503 CiteScore™: 2

ISSN Imprimir: 0893-9675
ISSN En Línea: 2162-6448

Critical Reviews™ in Oncogenesis

DOI: 10.1615/CritRevOncog.2015012997
pages 35-47

Histone Deacetylases and Mechanisms of Regulation of Gene Expression

Hong Ping Chen
Department of Surgery, Boston University Medical School, Boston University, Roger Williams Medical Center, Providence, RI; Department of Histology and Embryology, Medical College, Nanchang University, Nanchang, China
Yu Tina Zhao
Department of Surgery, Boston University Medical School, Boston University, Roger Williams Medical Center, Providence, RI
Ting C. Zhao
Department of Surgery, Boston University Medical School, Boston University, Roger Williams Medical Center, Providence, RI

SINOPSIS

In recent years it has become widely recognized that histone modification plays a pivotal role in controlling gene expression and is involved in a wide spectrum of disease regulation. Histone acetylation is a major modification that affects gene transcription and is controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs). HATs acetylate lysines of histone proteins, resulting in the relaxation of chromatin structure, and they also facilitate gene activation. Conversely, HDACs remove acetyl groups from hyperacetylated histones and suppress general gene transcription. In addition to histones, numerous nonhistone proteins can be acetylated and deacetylated, and they also are involved in the regulation of a wide range of diseases. To date there are 18 HDACs in mammals classified into 4 classes based on homology to yeast HDACs. Accumulating evidence has revealed that HDACs play crucial roles in a variety of biological processes including inflammation, cell proliferation, apoptosis, and carcinogenesis. In this review we summarize the current state of knowledge of HDACs in carcinogenesis and describe the involvement of HDACs in cancer-associated molecular processes. It is hoped than an understanding of the role of HDACs in cancer will lead to the design of more potent and specific drugs targeting selective HDAC proteins for the treatment of the disease.


Articles with similar content:

Histone Acetyltransferases in Cancer: Guardians or Hazards?
Critical Reviews™ in Oncogenesis, Vol.22, 2017, issue 3-4
Antonis Kirmizis, Christina Demetriadou
Dual Role of p21 in the Progression of Cancer and Its Treatment
Critical Reviews™ in Eukaryotic Gene Expression, Vol.26, 2016, issue 1
Amna Parveen, Whang Wan Kyunn, Muhammad Sajid Hamid Akash, Kanwal Rehman
Targeting the Regulatory Machinery of BIM for Cancer Therapy
Critical Reviews™ in Eukaryotic Gene Expression, Vol.22, 2012, issue 2
Steven Grant, Hisashi Harada
The Membrane-Bound Mucins: How Large O-Glycoproteins Play Key Roles in Epithelial Cancers and Hold Promise as Biological Tools for Gene-Based and Immunotherapies
Critical Reviews™ in Oncogenesis, Vol.14, 2008, issue 2-3
Nicolas Jonckheere, Isabelle Van Seuningen
Emerging Roles of MicroRNAs in the Wnt Signaling Network
Critical Reviews™ in Oncogenesis, Vol.18, 2013, issue 4
Troels Schepeler