Suscripción a Biblioteca: Guest
Critical Reviews™ in Oncogenesis

Publicado 4 números por año

ISSN Imprimir: 0893-9675

ISSN En Línea: 2162-6448

SJR: 0.395 SNIP: 0.322 CiteScore™:: 2.5 H-Index: 54

Indexed in

The VAV Family of Signal Transduction Molecules

Volumen 7, Edición 1-2, 1996, pp. 65-88
DOI: 10.1615/CritRevOncog.v7.i1-2.50
Get accessGet access

SINOPSIS

This review summarizes the current knowledge on the structure, expression, and physiological roles of the Vav family, a novel group of signaling transducers with known representatives in mammalian (Vav and Vav-2) and nematodes (Cel Vav). Vav was the first member of this family identified during the course of gene transfer experiments aimed at characterizing loci involved in human neoplasia. This transforming protein displays a complex array of structural motifs, including calponin-homology, acidic, dbl-homology, pleckstrin-homology, cysteine-rich, SH3. and SH2 domains. After activation of cells with extracellular stimuli, Vav becomes phosphorylated on tyrosine residues and catalyzes the exchange of guanosine nucleotides on the GTP-binding protein Rac-1, thereby allowing the transition of this GTPase from the inactive (GDP-loaded) to the active (GTP-loaded) state. In addition, Vav associates with phosphorylated receptors, protein tyrosine kinases, and intracellular phosphoproteins whose identities are now being determined. Gene targeting experiments indicate that vav gene disruption results in severe signaling defects in lymphoid cells, further reinforcing its role as a key regulator of mitogenic pathways. Vav-2 and C. elegans Vav bear significant structural similarity with Vav, suggesting that they will be important players as well in evolutionarily conserved signal transduction pathways involved in mitogenesis and cellular transformation.

CITADO POR
  1. Miranti Cindy K., Leng Lijun, Maschberger Petra, Brugge Joan S., Shattil Sanford J., Identification of a novel integrin signaling pathway involving the kinase Syk and the guanine nucleotide exchange factor Vav1, Current Biology, 8, 24, 1998. Crossref

  2. Beckerle Mary C., Zyxin: Zinc fingers at sites of cell adhesion, BioEssays, 19, 11, 1997. Crossref

  3. Greenberg Steven, Fc receptor-mediated phagocytosis, in Phagocytosis: The Host, 5, 1999. Crossref

  4. Yunta Mónica, Oliva José L, Barcia Ramiro, Horejsi Vaclav, Angelisova Paula, Lazo Pedro A., Transient activation of the c-Jun N-terminal kinase (JNK) activity by ligation of the tetraspan CD53 antigen in different cell types, European Journal of Biochemistry, 269, 3, 2002. Crossref

  5. Aghazadeh Behzad, Lowry William E, Huang Xin-Yun, Rosen Michael K, Structural Basis for Relief of Autoinhibition of the Dbl Homology Domain of Proto-Oncogene Vav by Tyrosine Phosphorylation, Cell, 102, 5, 2000. Crossref

  6. El-Deeb Ibrahim Mustafa, Yoo Kyung Ho, Lee So Ha, ROS receptor tyrosine kinase: a new potential target for anticancer drugs, Medicinal Research Reviews, 2010. Crossref

  7. Waddick Kevin G., Uckun Fatih M., Innovative treatment programs against cancer, Biochemical Pharmacology, 56, 11, 1998. Crossref

  8. Kancharla A., Maoz M., Jaber M., Agranovich D., Peretz T., Grisaru-Granovsky S., Uziely B., Bar-Shavit R., PH motifs in PAR1&2 endow breast cancer growth, Nature Communications, 6, 1, 2015. Crossref

  9. Bar-Shavit R., Maoz M., Kancharla A., Jaber M., Agranovich D., Grisaru-Granovsky S., Uziely B., Protease-activated receptors (PARs) in cancer, in G Protein-Coupled Receptors - Signaling, Trafficking and Regulation, 132, 2016. Crossref

  10. Trenkle Thomas, McClelland Michael, Adlkofer Kathrin, Welsh John, Major transcript variants of VAV3, a new member of the VAV family of guanine nucleotide exchange factors, Gene, 245, 1, 2000. Crossref

  11. Veluthakal Rajakrishnan, Tunduguru Ragadeepthi, Arora Daleep Kumar, Sidarala Vaibhav, Syeda Khadija, Vlaar Cornelis P., Thurmond Debbie C., Kowluru Anjaneyulu, VAV2, a guanine nucleotide exchange factor for Rac1, regulates glucose-stimulated insulin secretion in pancreatic beta cells, Diabetologia, 58, 11, 2015. Crossref

  12. Billadeau Daniel D., Brumbaugh Kathryn M., Dick Christopher J., Schoon Renee A., Bustelo Xose R., Leibson Paul J., The Vav–Rac1 Pathway in Cytotoxic Lymphocytes Regulates the Generation of Cell-mediated Killing, Journal of Experimental Medicine, 188, 3, 1998. Crossref

  13. Kjøller Lars, Hall Alan, Signaling to Rho GTPases, Experimental Cell Research, 253, 1, 1999. Crossref

  14. Denkinger Diane J, Borges Chad R, Butler Connie L, Cushman Allison M, Kawahara Rodney S, Genomic organization and regulation of the vav proto-oncogene, Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1491, 1-3, 2000. Crossref

  15. Bieg Sabine, Differential Expression of p95vavin Primary Lymphoid Tissue of BB Rats Congenic for the Lymphopenia Gene, Autoimmunity, 30, 1, 1999. Crossref

  16. Singh Raghvendra, Central role of PI3K-SYK interaction in fibrinogen-induced lamellipodia and filopodia formation in platelets, FEBS Open Bio, 6, 12, 2016. Crossref

  17. CHEN XIN, CHEN SI, LIU XIAO-AN, ZHOU WEN-BIN, MA RUI-RUI, CHEN LIN, Vav3 oncogene is upregulated and a poor prognostic factor in breast cancer patients, Oncology Letters, 9, 5, 2015. Crossref

  18. Abe Karon, Rossman Kent L., Liu Betty, Ritola Kimberly D., Chiang Derek, Campbell Sharon L., Burridge Keith, Der Channing J., Vav2 Is an Activator of Cdc42, Rac1, and RhoA, Journal of Biological Chemistry, 275, 14, 2000. Crossref

  19. Tamás Péter, Solti Zita, Buday László, Membrane-targeting is critical for the phosphorylation of Vav2 by activated EGF receptor, Cellular Signalling, 13, 7, 2001. Crossref

  20. Reimer Daniel, Boesch Maximilian, Wolf Dominik, Marth Christian, Sopper Sieghart, Hatina Jiri, Altevogt Peter, Parson Walther, Hackl Hubert, Zeimet Alain G., Truncated isoform Vav3.1 is highly expressed in ovarian cancer stem cells and clinically relevant in predicting prognosis and platinum-response, International Journal of Cancer, 142, 8, 2018. Crossref

  21. Abdrabou Abdalla, Wang Zhixiang, Post-Translational Modification and Subcellular Distribution of Rac1: An Update, Cells, 7, 12, 2018. Crossref

  22. Gold M. R., Intermediary Signaling Effectors Coupling the B-Cell Receptor to the Nucleus, in Signal Transduction and the Coordination of B Lymphocyte Development and Function I, 245/1, 2000. Crossref

  23. Zaffran Yona, Destaing Olivier, Roux Agnès, Ory Stéphane, Nheu Thao, Jurdic Pierre, Rabourdin-Combe Chantal, Astier Anne L., CD46/CD3 Costimulation Induces Morphological Changes of Human T Cells and Activation of Vav, Rac, and Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase, The Journal of Immunology, 167, 12, 2001. Crossref

  24. Billadeau Daniel D., Mackie Stacy M., Schoon Renee A., Leibson Paul J., Specific Subdomains of Vav Differentially Affect T Cell and NK Cell Activation, The Journal of Immunology, 164, 8, 2000. Crossref

  25. Fischer Edmond H., How Proteins Speak with One Another In Cell Signaling, in Molecular Nuclear Medicine, 2003. Crossref

  26. He Minghui, Westerberg Lisa S., Congenital Defects in Actin Dynamics of Germinal Center B Cells, Frontiers in Immunology, 10, 2019. Crossref

  27. Li Siwei, Wang Qian, Wang Yi, Chen Xinmei, Wang Zhixiang, PLC-γ1 and Rac1 Coregulate EGF-Induced Cytoskeleton Remodeling and Cell Migration, Molecular Endocrinology, 23, 6, 2009. Crossref

  28. Ulc Annika, Gottschling Christine, Schäfer Ina, Wegrzyn David, van Leeuwen Simon, Luft Veronika, Reinhard Jacqueline, Faissner Andreas, Involvement of the guanine nucleotide exchange factor Vav3 in central nervous system development and plasticity, Biological Chemistry, 398, 5-6, 2017. Crossref

  29. Wilsbacher Julie L, Moores Sheri L, Brugge Joan S, An active form of Vav1 induces migration of mammary epithelial cells by stimulating secretion of an epidermal growth factor receptor ligand, Cell Communication and Signaling, 4, 1, 2006. Crossref

  30. Duan Lei, Raja Srikumar M., Chen Gengsheng, Virmani Sumeet, Williams Stetson H., Clubb Robert J., Mukhopadhyay Chandrani, Rainey Mark A., Ying Guoguang, Dimri Manjari, Chen Jing, Reddi Alagarsamy L., Naramura Mayumi, Band Vimla, Band Hamid, Negative Regulation of EGFR-Vav2 Signaling Axis by Cbl Ubiquitin Ligase Controls EGF Receptor-mediated Epithelial Cell Adherens Junction Dynamics and Cell Migration, Journal of Biological Chemistry, 286, 1, 2011. Crossref

  31. Delaguillaumie Alix, Lagaudrière-Gesbert Cécile, Popoff Michel R., Conjeaud Hélène, Rho GTPases link cytoskeletal rearrangements and activation processes induced via the tetraspanin CD82 in T lymphocytes, Journal of Cell Science, 115, 2, 2002. Crossref

  32. Abe Karon, Whitehead Ian P., O'Bryan John P., Der Channing J., Involvement of NH2-terminal Sequences in the Negative Regulation of Vav Signaling and Transforming Activity, Journal of Biological Chemistry, 274, 43, 1999. Crossref

  33. Tamás Péter, Solti Zita, Bauer Petra, Illés András, Sipeki Szabolcs, Bauer András, Faragó Anna, Downward Julian, Buday László, Mechanism of Epidermal Growth Factor Regulation of Vav2, a Guanine Nucleotide Exchange Factor for Rac, Journal of Biological Chemistry, 278, 7, 2003. Crossref

  34. Miura-Shimura Yuko, Duan Lei, Rao Navin L., Reddi Alagarsamy L., Shimura Hideki, Rottapel Rob, Druker Brain J., Tsygankov Alexander, Band Vimla, Band Hamid, Cbl-mediated Ubiquitinylation and Negative Regulation of Vav, Journal of Biological Chemistry, 278, 40, 2003. Crossref

  35. Prasad Nagendra, Topping Robert S., Decker Stuart J., SH2-Containing Inositol 5′-Phosphatase SHIP2 Associates with the p130 Cas Adapter Protein and Regulates Cellular Adhesion and Spreading , Molecular and Cellular Biology, 21, 4, 2001. Crossref

  36. Zugaza José L., López-Lago Miguel A., Caloca Marı́a J., Dosil Mercedes, Movilla Nieves, Bustelo Xosé R., Structural Determinants for the Biological Activity of Vav Proteins, Journal of Biological Chemistry, 277, 47, 2002. Crossref

  37. Fukuhara Shigetomo, Murga Cristina, Zohar Muriel, Igishi Tadashi, Gutkind J. Silvio, A Novel PDZ Domain Containing Guanine Nucleotide Exchange Factor Links Heterotrimeric G Proteins to Rho, Journal of Biological Chemistry, 274, 9, 1999. Crossref

  38. Zeng Liyu, Sachdev Pallavi, Yan Lunbiao, Chan Joseph L., Trenkle Thomas, McClelland Michael, Welsh John, Wang Lu-Hai, Vav3 Mediates Receptor Protein Tyrosine Kinase Signaling, Regulates GTPase Activity, Modulates Cell Morphology, and Induces Cell Transformation, Molecular and Cellular Biology, 20, 24, 2000. Crossref

  39. Movilla Nieves, Crespo Piero, Bustelo Xosé R, Signal transduction elements of TC21, an oncogenic member of the R-Ras subfamily of GTP-binding proteins, Oncogene, 18, 43, 1999. Crossref

  40. Movilla Nieves, Bustelo Xosé R., Biological and Regulatory Properties of Vav-3, a New Member of the Vav Family of Oncoproteins, Molecular and Cellular Biology, 19, 11, 1999. Crossref

  41. Booden Michelle A., Campbell Sharon L., Der Channing J., Critical but Distinct Roles for the Pleckstrin Homology and Cysteine-Rich Domains as Positive Modulators of Vav2 Signaling and Transformation, Molecular and Cellular Biology, 22, 8, 2002. Crossref

  42. Pandey Akhilesh, Podtelejnikov Alexandre V., Blagoev Blagoy, Bustelo Xosé R., Mann Matthias, Lodish Harvey F., Analysis of receptor signaling pathways by mass spectrometry: Identification of Vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors, Proceedings of the National Academy of Sciences, 97, 1, 2000. Crossref

  43. Feshchenko Elena A., Langdon Wallace Y., Tsygankov Alexander Y., Fyn, Yes, and Syk Phosphorylation Sites in c-Cbl Map to the Same Tyrosine Residues That Become Phosphorylated in Activated T Cells, Journal of Biological Chemistry, 273, 14, 1998. Crossref

  44. Bustelo Xosé R., Regulatory and Signaling Properties of the Vav Family, Molecular and Cellular Biology, 20, 5, 2000. Crossref

  45. Opalinska Joanna B., Machalinski Boguslaw, Ratajczak Janina, Ratajczak Mariusz Z., Gewirtz Alan M., Multigene Targeting with Antisense Oligodeoxynucleotides: An Exploratory Study Using Primary Human Leukemia Cells, Clinical Cancer Research, 11, 13, 2005. Crossref

  46. Gao Chunlei, Schaefer Erik, Lakkis Montaha, Blystone Scott D., β3 Tyrosine Phosphorylation and αvβ3-mediated Adhesion Are Required for Vav1 Association and Rho Activation in Leukocytes, Journal of Biological Chemistry, 280, 15, 2005. Crossref

  47. Liu Betty P., Burridge Keith, Vav2 Activates Rac1, Cdc42, and RhoA Downstream from Growth Factor Receptors but Not β1 Integrins, Molecular and Cellular Biology, 20, 19, 2000. Crossref

  48. Tong Junfeng, Li Laiji, Ballermann Barbara, Wang Zhixiang, Phosphorylation of Rac1 T108 by Extracellular Signal-Regulated Kinase in Response to Epidermal Growth Factor: a Novel Mechanism To Regulate Rac1 Function, Molecular and Cellular Biology, 33, 22, 2013. Crossref

  49. Palmby Todd R., Abe Karon, Der Channing J., Critical Role of the Pleckstrin Homology and Cysteine-rich Domains in Vav Signaling and Transforming Activity, Journal of Biological Chemistry, 277, 42, 2002. Crossref

  50. López-Lago Miguel, Lee Hyunmi, Cruz Cristina, Movilla Nieves, Bustelo Xosé R., Tyrosine Phosphorylation Mediates Both Activation and Downmodulation of the Biological Activity of Vav, Molecular and Cellular Biology, 20, 5, 2000. Crossref

  51. Yablonski Deborah, Kuhne Michelle R., Kadlecek Theresa, Weiss Arthur, Uncoupling of Nonreceptor Tyrosine Kinases from PLC-γ1 in an SLP-76-Deficient T Cell, Science, 281, 5375, 1998. Crossref

  52. Tse K-F, Allebach J, Levis M, Smith BD, Bohmer FD, Small D, Inhibition of the transforming activity of FLT3 internal tandem duplication mutants from AML patients by a tyrosine kinase inhibitor, Leukemia, 16, 10, 2002. Crossref

  53. Omble Aishwarya, Kulkarni Kiran, GPCRs that Rhoar the Guanine nucleotide exchange factors, Small GTPases, 13, 1, 2022. Crossref

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain