Suscripción a Biblioteca: Guest
Critical Reviews™ in Oncogenesis

Publicado 4 números por año

ISSN Imprimir: 0893-9675

ISSN En Línea: 2162-6448

SJR: 0.395 SNIP: 0.322 CiteScore™:: 2.5 H-Index: 54

Indexed in

Computational Biology: Toward Early Detection of Pancreatic Cancer

Volumen 24, Edición 2, 2019, pp. 191-198
DOI: 10.1615/CritRevOncog.2019031335
Get accessGet access

SINOPSIS

Pancreatic cancer is the eleventh most common cancer type and the seventh leading cause of cancer mortality globally. Although chemotherapy is widely employed in the treatment of any cancer type, the response rate in pancreatic cancer is very low. Hence, new and effective techniques in the treatment of pancreatic cancer are needed. Recent advances in molecular profiling as well as high-throughput sequencing technologies, for example, next-generation sequencing technologies, have revolutionized the field of cancer research. Protein–protein interaction among cancer and normal cells plays an important role in any cancer molecular mechanisms, and identifying key genes or protein via experimental technologies requires huge expenditures of capital and time. Thus, integrated computational approaches are urgently needed in cancer research. In this review, we discuss different computational approaches developed to detect novel key genes (TRIM24, CDK14, ECT2 and PSRC1), miRNA (e.g., miR-424, miR-203, miR-1266, miR-1293, and miR-4772), and pancreatic cancer drugs (e.g., trifluoperazine dihydrochloride and trifluoperazine). In the near future, the information presented here will be highly useful in the early diagnosis as well as treatment of pancreatic malignancy.

REFERENCIAS
  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. Cancer J Clin. 2019;69:7-34. doi:10.3322/caac.21551.

  2. Rawla P, Sunkara T, Gaduputi V. Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J Clin Oncol. 2019;10:10-27. doi:10.14740/ wjon1166.

  3. Gupta MK, Behara SK, Vadde R. In silico analysis of differential gene expressions in biliary structure and hepatic carcinoma. Gene. 2017;597:49-58.

  4. Gupta MK, Behera SK, Dehury B, Mahapatra N. Identification and characterization of differentially expressed genes from human microglial cell samples infected with Japanese encephalitis virus. J Vector Borne Dis. 2017;54:131-38.

  5. Gupta MK, Vadde R. Identification and characterization of differentially expressed genes in type 2 diabetes using in silico approach. Comput Biol Chem. 2019:24-35. doi:10.1016/j.compbiolchem.2019.01.010.

  6. Gupta MK, Vadde R, Gouda G, Donde R, Kumar J, Behera L. Computational approach to understand molecular mechanism involved in BPH resistance in Bt- rice plant. J Mol Graph Model. 2019;88:209-220. doi:10.1016/j.jmgm.2019.01.018.

  7. Garner AL, Janda KD. Protein-protein interactions and cancer: targeting the central dogma. Curr Topics Med Chem. 2011;11:258-80.

  8. Ivanov AA, Khuri FR, Fu H. Targeting protein-protein interactions as an anticancer strategy. Trend Pharmacol Sci. 2013;34:393-400. doi:10.1016/j.tips.2013.04.007.

  9. Ruffalo M, Bar-Joseph Z. Protein interaction disruption in cancer. BMC Cancer. 2019;19:370. doi:10.1186/ s12885-019-5532-5.

  10. Tang X, Hu X, Yang X, Fan Y, Li Y, Hu W, Liao Y, Zheng M, Peng W, Gao L. Predicting diabetes mellitus genes via protein-protein interaction and protein subcellular localization information. BMC Genom. 2016;17:433. doi:10.1186/s12864-016-2795-y.

  11. Madani Tonekaboni SA, Soltan Ghoraie L, Manem VSK, Haibe-Kains B. Predictive approaches for drug combination discovery in cancer. Brief Bioinform. 2018;19:263-76. doi:10.1093/bib/bbw104.

  12. Roy M, Finley SD. Computational model predicts the effects of targeting cellular metabolism in pancreatic cancer. Front Physiol. 2017;8. doi:10.3389/ fphys.2017.00217.

  13. Stelzl U, Wanker EE. The value of high quality protein- protein interaction networks for systems biology. Curr Op Chem Biol. 2006;10:551-58. doi:10.1016/j. cbpa.2006.10.005.

  14. Gandhi TK, Zhong J, Mathivanan S, Karthick L, Chandrika KN, Mohan SS, Sharma S, Pinkert S, Nagaraju S, Periaswamy B, Mishra G. Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat Gen. 2006;38:285-93. doi:10.1038/ng1747.

  15. Oti M, Snel B, Huynen MA, Brunner HG. Predicting disease genes using protein-protein interactions. J Med Gen. 2006;43:691-98. doi:10.1136/jmg.2006.041376.

  16. Chen JY, Shen C, Sivachenko AY. Mining alzheimer disease relevant proteins from integrated protein interactome data. Biocomputing. 2006;367-78. doi:10.1142/9789812701626_0034.

  17. Sprinzak E, Sattath S, Margalit H. How reliable are experimental protein-protein interaction data? J Mol Biol. 2003;327:919-23.

  18. Chen J, Yuan B. Detecting functional modules in the yeast protein-protein interaction network. Bioinformatics. 2006;22:2283-90. doi:10.1093/bioinformatics/btl370.

  19. Thul PJ, Lindskog C. The human protein atlas: a spatial map of the human proteome. Protein Sci. 2018;27:233-44. doi:10.1002/pro.3307.

  20. Lee L, Wang K, Li G, Xie Z, Wang Y, Xu J, Sun S, Pocalyko D, Bhak J, Kim C, Lee KH. Liverome: a 33. curated database of liver cancer-related gene signatures with self-contained context information. BMC Genom. 2011;12(Suppl 3):S3. doi:10.1186/1471-2164-12-S3-S3.

  21. Wang J, Vasaikar S, Shi Z, Greer M, Zhang B. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucl Acid Res. 2017;45:W130-37. doi:10.1093/nar/gkx356.

  22. Wu C, Zhu J, Zhang X. Integrating gene expression and protein-protein interaction network to prioritize cancer-associated genes. BMC Bioinform. 2012;13:182. 36. doi:10.1186/1471-2105-13-182.

  23. Gautier L, Cope L, Bolstad BM, Irizarry RA. affy-analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20:307-15.

  24. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation Stat Comp; 2014.

  25. Wang CJ, Xu RH, Yuan QY, Wang YK, Shen DW, 38. Wang XJ, Gao W, Zhang H, Jiang H. Bioinformatics method to analyze the mechanism of pancreatic cancer disorder. J Comput Biol. 2013;20:444-52. doi:10.1089/ 39. cmb.2012.0281.

  26. Long J, Wu X-D, Liu Z, Xu Y-H, Ge C-L. Integrated regulatory network involving differently expressed genes and protein-protein interaction on pancreatic cancer. European Rev Med Pharmacol Sci. 2015;19:2423-28.

  27. Li C, Zeng X, Yu H, Gu Y, Zhang W. Identification of 40. hub genes with diagnostic values in pancreatic cancer by bioinformatics analyses and supervised learning methods. World J Surg Oncol. 2018;16:223. doi:10.1186/ s12957-018-1519-y.

  28. Liu B, Yang H, Taher L, Denz A, Grutzmann R, Pilarsky 41. C, Weber GF. Identification of prognostic biomarkers by combined mRNA and miRNA expression microarray analysis in pancreatic cancer. Trans Oncol. 2018;11:700-14. doi:10.1016/j.tranon.2018.03.003.

  29. Lv K, Yang J, Sun J, Guan J. Identification of key candidate genes for pancreatic cancer by bioinformatics analysis. Exper Therap Med. 2019;18:451-58. doi:10.3892/42. etm.2019.7619.

  30. Yuan YH, Zhou J, Zhang Y, Xu MD, Wu J, Li W, Wu MY, Li DM. Identification of key genes and pathways downstream of the P-catenin-TCF7L1 complex in pancreatic cancer cells using bioinformatics analysis. Oncol Lett. 2019. doi:10.3892/ol.2019.10444.

  31. Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4:R60.

  32. Kumar A, Agarwal S, Heyman JA, Matson S, Heidtman M, Piccirillo S, Umansky L, Drawid A, Jansen R, Liu Y, Cheung KH. Subcellular localization of the yeast proteome. Genes Develop. 2002;16:707-19. doi:10.1101/ gad.970902.

  33. de Lichtenberg U, Jensen LJ, Brunak S, Bork P. Dynamic complex formation during the yeast cell cycle. Science. 2005;307:724-27. doi:10.1126/science.1105103.

  34. Luzi E, D'Asta F, Brandi ML. MicroRNAs and pancreatic-endocrine system. Noncod RNA Endocrinol. 2014;1. doi:10.2478/micrnado-2013-0003.

  35. Hu L-H, Ji J-T, Li Z-S. Potential application of miRNAs as diagnostic and therapeutic tools in chronic pancreatitis. J Cell Mol Med. 2015;19:2049-57. doi:10.1111/ jcmm.12603.

  36. Maltby S, Plank M, Tay HL, Collison A, Foster PS. Targeting microRNA function in respiratory diseases: mini-review. Front Physiol. 2016;7:21. doi:10.3389/ fphys.2016.00021.

  37. Sood P, Krek A, Zavolan M, Macino G, Rajewsky N. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci U S A. 2006;103:2746-51. doi:10.1073/pnas.0511045103.

  38. Xiang H, Tao X, Xia S, Qu J, Song H, Liu J, Shang D. Targeting microRNA function in acute pancreatitis. Front Physiol. 2017;8. doi:10.3389/fphys.2017.00726.

  39. Szafranska AE, Davison TS, John J, Cannon T, Sipos B, Maghnouj A, Labourier E, Hahn SA. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene. 2007;26:4442-52. doi:10.1038/sj.onc.1210228.

  40. Goodwin D, Rosenzweig B, Zhang J, Xu L, Stewart S, Thompson K, Rouse R. Evaluation of miR-216a and miR-217 as potential biomarkers of acute exocrine pancreatic toxicity in rats. Toxicol Pathol. 2017;45:321-34. doi:10.1177/0192623316678090.

  41. Dixit AK, Sarver AE, Yuan Z, George J, Barlass U, Cheema H, Sareen A, Banerjee S, Dudeja V, Dawra R, Subramanian S. Comprehensive analysis of microRNA signature of mouse pancreatic acini: overexpression of miR-21-3p in acute pancreatitis. Am J Physio l-Gastrointest Liver Physiol. 2016;311:G974-80. doi:10.1152/ajpgi.00191.2016.

  42. Prevot PP, Augereau C, Simion A, Van den Steen G, Dauguet N, Lemaigre FP, Jacquemin P. Let-7b and miR-495 stimulate differentiation and prevent metaplasia of pancreatic acinar cells by repressing HNF6. Gastroenterology. 2013;145:668-78. doi:10.1053/j. gastro.2013.05.016.

  43. Naderi E, Mostafaei M, Pourshams A, Mohamadkhani A. Network of microRNAs-mRNAs interactions in pancreatic cancer. BioMed Res Int. 2014. doi:10.1155/2014/534821.

  44. Zhao X, Ren Y, Cui N, Wang X, Cui Y. Identification of key microRNAs and their targets in exosomes of pancreatic cancer using bioinformatics analysis. Medicine. 2018;97:e12632. doi:10.1097/MD.0000000000012632.

  45. Shi XH, Li X, Zhang H, He RZ, Zhao Y, Zhou M, Pan ST, Zhao CL, Feng YC, Wang M, Guo XJ. A Five-microRNA signature for survival prognosis in pancreatic adenocarcinoma based on TCGA data. Sci Rep. 2018;8:7638. doi:10.1038/s41598-018-22493-5.

  46. Ma MZ, Kong X, Weng MZ, Cheng K, Gong W, Quan ZW, Peng CH. Candidate microRNA biomarkers of pancreatic ductal adenocarcinoma: meta-analysis, experimental validation and clinical significance. J Exper Clin Cancer Res. 2013;32:71. doi:10.1186/1756- 9966-32-71.

  47. Liang L, Wei DM, Li JJ, Luo DZ, Chen G, Dang YW, Cai XY. Prognostic microRNAs and their potential molecular mechanism in pancreatic cancer: a study based on The Cancer Genome Atlas and bioinformatics investigation. Mol Med Rep. 2018;17:939-51. doi:10.3892/mmr.2017.7945.

  48. Tan X, Zhou L, Wang H, Yang Y, Sun Y, Wang Z, Zhang X, Gao F, Li H. Differential expression profiles of microRNAs in highly and weakly invasive/metastatic pancreatic cancer cells. Oncol Lett. 2018;16:6026-38. doi:10.3892/ol.2018.9352.

  49. Gupta MK, Vadde R. In silico identification of natural product inhibitors for y-secretase activating protein, a therapeutic target for Alzheimer's disease. J Cell Biochem. 2018. doi:10.1002/jcb.28316.

  50. Gola J, Obrezanova O, Champness E, Segall M. ADMET property prediction: the state of the art and current challenges. QSAR Combinat Sci. 2006;25:1172-80. doi:10.1002/qsar.200610093.

  51. Lagorce D, Douguet D, Miteva MA, Villoutreix BO. Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors. Sci Rep. 2017;7:46277. doi:10.1038/ srep46277.

  52. Gupta MK, Vadde R. Insights into the structure-function relationship of both wild and mutant Zinc transporter ZnT8 in human: a computational structural biology approach. J Biomol Struct Dynam. 2019:1-22. doi:10. 1080/07391102.2019.1567391.

  53. Quesada-Romero L, Mena-Ulecia K, Tiznado W, Caballero J. Insights into the interactions between maleimide derivates and GSK3P combining molecular docking and QSAR. PLoS One. 2014;9:e102212. doi:10.1371/journal.pone.0102212.

  54. Ougolkov AV, Fernandez-Zapico ME, Bilim VN, Smyrk TC, Chari ST, Billadeau DD. Aberrant nuclear accumulation of glycogen synthase kinase-3p in human pancreatic cancer: association with kinase activity and tumor dedifferentiation. Clin Cancer Res. 2006;12:5074-81. doi:10.1158/1078-0432.CCR-06-0196.

  55. Neira JL, Bintz J, Arruebo M, Rizzuti B, Bonacci T, Vega S, Lanas A, Velazquez-Campoy A, Iovanna JL, Abian O. Identification of a drug targeting an intrinsically disordered protein involved in pancreatic adenocarcinoma. Sci Rep. 2017;7:39732. doi:10.1038/ srep39732.

  56. Santofimia-Castano P, Xia Y, Lan W, Zhou Z, Huang C, Peng L, Soubeyran P, Velazquez-Campoy A, Abian O, Rizzuti B, Neira JL. Ligand-based design identifies a potent NUPR1 inhibitor exerting anticancer activity via necroptosis. J Clin Investig. 2019;129:2500-13. doi:10.1172/JCI127223.

  57. Alberghina L, Gaglio D, Gelfi C, Moresco RM, Mauri G, Bertolazzi P, Messa C, Gilardi MC, Chiaradonna F, Vanoni M. Cancer cell growth and survival as a system-level property sustained by enhanced glycolysis and mitochondrial metabolic remodeling. Front Physiol. 2012;3:362. doi:10.3389/fphys.2012.00362.

  58. Le Novere N. Quantitative and logic modelling of molecular and gene networks. Nat Rev Gen. 2015;16:146-58. doi:10.1038/nrg3885.

  59. Bordbar A, Monk JM, King ZA, Palsson BO. Constraint- based models predict metabolic and associated cellular functions. Nat Rev Gen. 2014;15:107-20. doi:10.1038/ nrg3643.

  60. Bosl GJ, Geller NL, Cirrincione C, Vogelzang NJ, Kennedy BJ, Whitmore WF, Vugrin D, Scher H, Nisselbaum J, Golbery RB. Multivariate analysis of prognostic variables in patients with metastatic testicular cancer. Cancer Res. 1983;43:3403-7.

  61. Panetta JC. A mathematical model of periodically pulsed chemotherapy: tumor recurrence and metastasis in a competitive environment. Bull Math Biol. 1996;58:425-47.

  62. Marm-Hernandez A, Lopez-Ramfrez SY, Mazo- Monsalvo D, Gallardo-Perez JC, Rodriguez-Enriquez S, Moreno-Sanchez R, Saavedra E. Modeling cancer glycolysis under hypoglycemia, and the role played by the differential expression of glycolytic isoforms. FEBS J. 2014;281:3325-45. doi:10.1111/febs.12864.

  63. Shestov AA, Liu X, Ser Z, CluntunAA, Hung YP, Huang L, Kim D, Le A, Yellen G, Albeck JG, Locasale JW. Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step. ELife. 2014;3. doi:10.7554/eLife.03342.

  64. Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, Perera RM, Ferrone CR, Mullarky E, Shyh-Chang N, Kang YA. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013;496:101-5. doi:10.1038/nature12040.

  65. Louzoun Y, Xue C, Lesinski GB, Friedman A. A mathematical model for pancreatic cancer growth and treatments. J Theoret Biol. 2014;351:74-82.

CITADO POR
  1. Gupta Manoj K., Vadde Ramakrishna, Sarojamma Vemula, Curcumin - A Novel Therapeutic Agent in the Prevention of Colorectal Cancer, Current Drug Metabolism, 20, 12, 2020. Crossref

  2. Gupta Manoj Kumar, Vadde Ramakrishna, A computational structural biology study to understand the impact of mutation on structure–function relationship of inward-rectifier potassium ion channel Kir6.2 in human, Journal of Biomolecular Structure and Dynamics, 39, 4, 2021. Crossref

  3. Srivani Gowru, Behera Santosh Kumar, Dariya Begum, Chalikonda Gayathri, Alam Afroz, Nagaraju Ganji Purnachandra, HIF-1α and RKIP: a computational approach for pancreatic cancer therapy, Molecular and Cellular Biochemistry, 472, 1-2, 2020. Crossref

  4. Gupta Manoj Kumar, Ramakrishna Vadde, Identification of targeted molecules in cervical cancer by computational approaches, in A Theranostic and Precision Medicine Approach for Female-Specific Cancers, 2021. Crossref

  5. Chen Shuoling, Gao Chang, Yu Tianyang, Qu Yueyang, Xiao Gary Guishan, Huang Zunnan, Bioinformatics Analysis of a Prognostic miRNA Signature and Potential Key Genes in Pancreatic Cancer, Frontiers in Oncology, 11, 2021. Crossref

  6. Gupta Manoj Kumar, Gouda Gayatri, Donde Ravindra, Vadde Ramakrishna, Tumor Heterogeneity: Challenges and Perspectives for Gastrointestinal Cancer Therapy, in Immunotherapy for Gastrointestinal Malignancies, 2020. Crossref

  7. Donde Ravindra, Gupta Manoj Kumar, Gouda Gayatri, Dash Sushanta Kumar, Behera Lambodar, Vadde Ramakrishna, Immune Cell Therapy Against Gastrointestinal Tract Cancers, in Immunotherapy for Gastrointestinal Malignancies, 2020. Crossref

  8. Gupta Manoj Kumar, Vadde Ramakrishna, Applications of Computational Biology in Gastrointestinal Malignancies, in Immunotherapy for Gastrointestinal Malignancies, 2020. Crossref

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain