Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Heat Transfer Research
Factor de Impacto: 0.404 Factor de Impacto de 5 años: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN En Línea: 2162-6561

Volumes:
Volumen 51, 2020 Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2016008510
pages 121-138

NUMERICAL STUDY OF MHD NATURAL CONVECTION LIQUID METAL FLOW AND HEAT TRANSFER IN A WAVY ENCLOSURE USING CVFEM

Mohsen Sheikholeslami
Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran; Renewable Energy Systems and Nanofluid Applications in Heat Transfer Laboratory, Babol Noshirvani University of Technology, Babol, Iran
Puneet Rana
Jaypee Institute of Information Technology, Noida
Soheil Soleimani
Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida 33174, USA

SINOPSIS

A comprehensive numerical investigation on natural convection of electrically conducting liquid metal flow and heat transfer characteristics in a wavy enclosure is presented. The control volume-based finite element method (CVFEM) has been adopted to solve numerically the governing conservation equations of mass, momentum, and energy by using a stream function vorticity formulation. Special attention is given to understand the effect of a transverse magnetic field on the heat transfer rate as well as flow configurations with different amplitudes of sinusoidal wall. The numerical procedure in this analysis yields consistent performance over a wide range of parameters; Hartmann number, Ha; Rayleigh number, Ra; dimensionless amplitude of sinusoidal wall, a, and a fixed Prandtl number (Pr = 0.025) for liquid metal. The results obtained are depicted in terms of streamlines and isotherms which show the significant effects of the Hartmann number on the fluid flow and temperature distribution inside the enclosure. It was found that the Nusselt number decreases with increase in the Hartmann number.