Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Heat Transfer Research
Factor de Impacto: 0.404 Factor de Impacto de 5 años: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN En Línea: 2162-6561

Volumes:
Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018018305
pages 529-553

HOMOTOPY STUDY OF ENTROPY GENERATION IN MAGNETIZED MICROPOLAR FLOW IN A VERTICAL PARALLEL PLATE CHANNEL WITH BUOYANCY EFFECT

Srinivas Jangili
Department of Mathematics, National Institute of Technology Meghalaya, Shillong, 793003, India
O. Anwar Bég
Fluid Mechanics, Nanosystems and Propulsion, Aeronautical and Mechanical Engineering, School of Computing, Science and Engineering, Newton Building, University of Salford, Manchester M54WT, United Kingdom

SINOPSIS

The paper presents the results of an analytical investigation into the buoyancy force effects on the entropy generation in magnetohydrodynamic non-Newtonian flow due to constant pressure gradient in a vertical parallel plate channel. The length of the channel plates is assumed to be infinite and uniform, and they are held at different temperatures. The Eringen thermomicropolar material model is used to simulate the rheological flow in the channel. The resulting governing equations are then solved under physically viable boundary conditions at the channel walls, using the Homotopy Analysis Method (HAM). The variations of emerging non-Newtonian and thermophysical parameters, i.e., couple stress parameter (between 1 and 10), Eringen micropolar parameter (0 ≤ c < 1), Reynolds number (between 1 and 5), Grashof number (between 0.1 and 5), Hartmann number (between 0.5 and 2), Brinkman number (between 0.1 and 0.5), and viscous dissipation parameter (between 0 and 1) are considered. The prescribed ranges of the parameters are physically representative of the real non-Newtonian magnetohydrodynamic thermal systems employing micropolar fluids. The computations show that an increasing magnetic field effect reduces the entropy production at the channel walls, whereas the converse behavior is observed for the increasing couple stress parameter, Reynolds number, Grashof number, and the viscous dissipation parameter. The increasing micropolarity parameter and Hartmann number effectively decrease the entropy generation production.


Articles with similar content:

A Study of Mixed Convection Flow over Stretching Cylinder in Presence of Slip Flow and Thermal Jump Boundary Conditions
International Journal of Fluid Mechanics Research, Vol.43, 2016, issue 4
Gurminder Singh, Upendra Mishra
SLIP VELOCITY EFFECTS ON CONVECTION FROM A VERTICAL SURFACE EMBEDDED IN A POROUS MEDIUM
Journal of Porous Media, Vol.17, 2014, issue 12
V. M. Al-Khliefat, Hamzeh M. Duwairi
HALL EFFECTS ON MHD SQUEEZING FLOW OF A WATER-BASED NANOFLUID BETWEEN TWO PARALLEL DISKS
Journal of Porous Media, Vol.22, 2019, issue 2
M. Veera Krishna, Ali J. Chamkha
BUOYANCY EFFECTS ON UNSTEADY REACTIVE VARIABLE PROPERTIES FLUID FLOW IN A CHANNEL FILLED WITH A POROUS MEDIUM
Journal of Porous Media, Vol.21, 2018, issue 8
Oluwole Daniel Makinde, Lazarus Rundora
ENTROPY ANALYSIS OF UNSTEADY MAGNETOHYDRODYNAMIC NANOFLUID OVER STRETCHING SHEET WITH ELECTRIC FIELD
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 6
Zainal Abdul Aziz, Zuhaila Ismail, Yahaya Shagaiya Daniel, Faisal Salah