Suscripción a Biblioteca: Guest
Heat Transfer Research

Publicado 18 números por año

ISSN Imprimir: 1064-2285

ISSN En Línea: 2162-6561

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00072 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.43 SJR: 0.318 SNIP: 0.568 CiteScore™:: 3.5 H-Index: 28

Indexed in

FLUCTUATING LOCAL DISSIPATION SCALES OF TURBULENT RAYLEIGH–BÉNARD CONVECTION USING THE LATTICE BOLTZMANN METHOD

Volumen 49, Edición 18, 2018, pp. 1825-1836
DOI: 10.1615/HeatTransRes.2018021333
Get accessGet access

SINOPSIS

Fluctuating local dissipation scales for turbulent Rayleigh–Bénard (RB) convection are investigated using the lattice Boltzmann method (LBM) at different Rayleigh numbers (Ra). Special attention is paid to the fluctuating local dissipation scales for turbulent RB convection, the probability density function (PDF) of the local dissipation scale and PDF of the dissipation rates at different Ra. It is observed that a further increase of Ra tears off unstable spokes to form more independent large-scale flow structures generated in the thermal boundary layers and driven by buoyancy. It is validated that the fluctuations of the energy dissipation field can directly be translated into a fluctuating local dissipation scale, which is found to develop ever finer fluctuations with increasing Ra. It is noted that the scales in the whole cell cover a wider range, both to the large-scale and small-scale end which is centered around the most probable value.

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain