Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Heat Transfer Research
Factor de Impacto: 0.404 Factor de Impacto de 5 años: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN En Línea: 2162-6561

Volumes:
Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018024769
pages 883-898

NUMERICAL AND EXPERIMENTAL STUDY OF THE SOLAR CHIMNEY WITH DIVERGENT COLLECTOR

Abdallah Bouabidi
Laboratory of Electro-Mechanic Systems, National Engineering School of Sfax, University of Sfax, B.P. 1173, km 3.5 Soukra, 3038 Sfax, Tunisia
Haythem Nasraoui
Laboratory of Electro-Mechanic Systems, National Engineering School of Sfax, University of Sfax, B.P. 1173, km 3.5 Soukra, 3038 Sfax, Tunisia
Ahmed Ayadi
Laboratory of Electro-Mechanic Systems, National Engineering School of Sfax, University of Sfax, B.P. 1173, km 3.5 Soukra, 3038 Sfax, Tunisia
Zied Driss
Laboratory of Electro-mechanic Systems, National Engineering School of Sfax PB1173, Soukra 3038, Sfax, Tunisia
Mohamed Salah Abid
Laboratory of Electro-mechanic Systems, National Engineering School of Sfax PB1173, Soukra 3038, Sfax, Tunisia

SINOPSIS

The aim of this work is to study and investigate the solar chimney power plant with divergent collector output. Interest is being shown in the standard solar chimney without collector divergence and in three solar chimneys with three divergence values. The computer simulation was achieved by using the ANSYS Fluent software. The flow characteristics inside all the solar chimney compounds were presented and discussed. An experimental setup of solar chimney was developed to carry out measurements. The results showed that the collector divergence affects the air flow behavior inside the chimney and, consequently, the system performance. The static pressure in the chimney inlet was affected by the collector slope and, consequently, by the velocity value. A comparison between the numerical results and experimental measurements showed good agreement.

REFERENCIAS

  1. Asnaghi, A. and Ladjevardi, S.M., Solar Chimney Power Plant Performance in Iran, Renew. Sustain. Energy Rev., vol. 16, pp. 3383–3390, 2012.

  2. Ayadi, A., Bouabidi, A., Driss, Z., and Abid, M.S., Experimental and Numerical Analysis of the Collector Roof Height Effect on the Solar Chimney Performance, Renew. Energy, vol. 115, pp. 649–662, 2018.

  3. Ayadi, A., Bouabidi, A., Driss, Z., and Abid, M.S., Study of the Meshing Effect on the Flow Characteristics inside a SCPP, Handbook on Navier–Stokes Equations: Theory and Applied Analysis, Hauppauge, NY: Nova Science Publishers, pp. 143– 158, 2017.

  4. Bilgen, E. and Rheault, J., Solar Chimney Power Plants for High Latitudes, Solar Energy, vol. 79, pp. 449–458, 2005.

  5. Bouabidi, A., Ayadi, A., Nasraoui, H., Driss, Z., and Abid, M.S., Study of Solar Chimney in Tunisia: Effect of the Chimney Confi gurations on the Local Flow Characteristics, Energy Build., vol. 169, pp. 27–38, 2018.

  6. Bouabidi, A., Driss, Z., and Abid, M.S., Study of Hydrostatic Pump Created under Liquid Sloshing in a Rectangular Tank Subjected to External Excitation, Int. J. Appl. Mech., vol. 8, pp. 1–15, 2016a.

  7. Bouabidi, A., Driss, Z., Kossentini, M., and Abid, M.S., Numerical and Experimental Investigation of the Hydrostatic Pump in a Battery Cell with Mixing Element, Arabian J. Sci. Eng., vol. 41, pp. 1595–1608, 2016b.

  8. Dos, M.A., Bernardes, S., Vob, A., and Weinrebe, G., Thermal and Technical Analyses of Solar Chimneys, Solar Energy, vol. 75, pp. 511–524, 2003.

  9. Gholamalizadeh, E. and Kim, M., Three-Dimensional CFD Analysis for Simulating the Greenhouse Effect in Solar Chimney Power Plants Using a Two-Band Radiation Model, Renew. Energy, vol. 63, pp. 498–506, 2014.

  10. Gholamalizadeh, E. and Kim, M.H., CFD (Computational Fluid Dynamics) Analysis of a Solar-Chimney Power Plant with Inclined Collector Roof, Energy, vol. 107, pp. 661–667, 2016.

  11. Haaf, W., Solar Chimneys: Part II: Preliminary Test Results from the Manzanares Pilot Plant, Int. J. Solar Energy, vol. 2, pp. 141–161, 1984.

  12. Kasaeian, A., Ghalamchi, M., and Ghalamchi, M., Simulation and Optimization of Geometric Parameters of a Solar Chimney in Tehran, Energy Convers. Manage., vol. 83, pp. 28–34, 2014.

  13. Koonsrisuk, A. and Chitsomboon, T., Dynamic Similarity in Solar Chimney Modeling, Solar Energy, vol. 81, pp. 1439–1446, 2007.

  14. Koonsrisuk, A. and Chitsomboon, T., Effects of Flow Area Changes on the Potential of Solar Chimney Power Plants, Energy, vol. 51, pp. 400–406, 2013a.

  15. Koonsrisuk, A. and Chitsomboon, T., Mathematical Modeling of Solar Chimney Power Plants, Energy, vol. 51, pp. 314–322, 2013b.

  16. Lal, S., Kaushik, S., and Hans, R., Experimental Investigation and CFD Simulation Studies of a Laboratory Scale Solar Chimney for Power Generation, Sustain. Energy Tech. Assess., vol. 13, pp. 13–22, 2016.

  17. Ming, T., Liu, W., Pan, Y., and Xu, G., Numerical Analysis of Flow and Heat Transfer Characteristics in Solar Chimney Power Plants with Energy Storage Layer, Energy Convers. Manage., vol. 49, pp. 2872–2879, 2008.

  18. Nizetic, S., Ninic, N., and Klarin, B., Analysis and Feasibility of Implementing Solar Chimney Power Plants in the Mediterranean Region, Energy, vol. 33, pp. 1680–1690, 2008.

  19. Pastohr, H., Kornadt, O., and Gürlebeck, K., Numerical and Analytical Calculations of the Temperature and Flow Field in the Upwind Power Plant, Int. J. Energy Res., vol. 28, pp. 495–510, 2004.

  20. Patel, S., Prasad, D., and Ahmed, M., Computational Studies on the Effect of Geometric Parameters on the Performance of a Solar Chimney Power Plant, Energy Convers Manage., vol. 77, pp. 424–431, 2014.

  21. Tingzhen, M., Wei, L., and Guoliang, X., Analytical and Numerical Investigation of the Solar Chimney Power Plant Systems, Int. J. Energy Res., vol. 30, pp. 861–873, 2006.

  22. Xu, G., Ming, T., Pan, Y., Meng, F., and Zhou, C., Numerical Analysis on the Performance of Solar Chimney Power Plant System. Energy Convers. Manage., vol. 52, pp. 876–883, 2011.

  23. Zhou, X., Yang, J., Xiao, B., and Hou, G., Experimental Study of Temperature Field in a Solar Chimney Power Setup, Appl. Therm. Eng., vol. 27, pp. 2044–2050, 2007.

  24. Zhou, X., Yang, J., Xiao, B., Hou, G., and Xing, F., Analysis of Chimney Height for Solar Chimney Power Plant, Appl. Therm. Eng., vol. 29, pp. 178–185, 2009.


Articles with similar content:

STUDY AND MODELING OF HEAT TRANSFER AND ENERGY PERFORMANCE IN A HYBRID PV/T COLLECTOR WITH DOUBLE PASSAGE OF AIR
International Journal of Energy for a Clean Environment, Vol.16, 2015, issue 1-4
Mohamed El Amine Slimani, Sofiane Bahria, Madjid Amirat
AN IMPROVED CORRELATION FOR HEAT TRANSFER COEFFICIENT OF TWO-PHASE FLOW IN A VERTICAL TUBE
Energy and the Environment, 1999, Vol.0, 1998, issue
Kemal Altinisik, Feridun Karakoc , Mahmut D. Mat, Kemal Aldas, Yuksel Kaplan
EXPERT SYSTEM FOR MAINTENANCE OF AIR CONDITIONING SYSTEMS
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 1992, issue
M. Ben Yahia, Denis Clodic
EXPERIMENTAL INVESTIGATION OF DROPLET COALESCENCE IN A FULL-CONE SPRAY FROM A TWO-FLUID NOZZLE USING LASER DIFFRACTION MEASUREMENTS
Atomization and Sprays, Vol.14, 2004, issue 4
M. Valencia-Bejarano, T. A. G. Langrish
NUMERICAL AND EXPERIMENTAL INVESTIGATION TO DETERMINE THE HEAT TRANSFER OF PERFORATED PLATE MATRIX HEAT EXCHANGER
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
Anish K. John, K. Krishnakumar