Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Heat Transfer Research
Factor de Impacto: 1.199 Factor de Impacto de 5 años: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN Imprimir: 1064-2285
ISSN En Línea: 2162-6561

Volumes:
Volumen 51, 2020 Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2020033124
pages 1135-1149

EVALUATION OF AERODYNAMIC PERFORMANCE OF AIRFOIL USING THE E-MPS METHOD AFTER ICING

Takuya Wada
Department of Mechanical Engineering, Tokyo University of Science, Nijuku 6-3-1, Katsushika-Ku, Tokyo 125-8585
K. Fukudome
Department of Mechanical Engineering, Tokyo University of Science, Nijuku 6-3-1, Katsushika-Ku, Tokyo 125-8585
H. Mamori
Department of Mechanical and Intelligent Systems Engineering, The University of Electro- Communications, 1-5-1, Chofugaoka, Chofu, Tokyo, 182-8585, Japan
Makoto Yamamoto
Department of Mechanical Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan

SINOPSIS

Accumulation of ice on aircraft can lead to severe problems in terms of safety; therefore, development of a method by which these issues can be simulated is required. In this study, the effects of several icing conditions such as inflow velocity, liquid water content, and the angle of attack on the ice accretion on an airfoil are numerically investigated using a particle-based method. The computational target is a NACA0012 airfoil with a chord length of 0.53 m, and droplets with a diameter of 1.0 mm are used in all cases. The icing simulations are carried out with different inflow velocities, liquid water contents, and angle of attack ranging from 50-140 m/s, 0.2-1.6 g/m3, and -8-20 degrees, respectively, with standard values of 50 m/s, 1.2 g/m3, and 4 degrees. The explicit moving particle simulation method, which is based on the Lagrangian approach, is employed to obtain complex ice shapes such as feathers. Moreover, aerodynamic performance before and after icing is also compared at different attack angles, using the ice shapes obtained with the moving particle method. It was confirmed that the feather shape, which is difficult to produce with the present lattice method, was reproduced using the particle-based method. The results indicated that icing decreases the stalling angle, and this decrease deteriorates aerodynamic performance by a maximum of 56.2%.

REFERENCIAS

  1. Addy, H.E., Ice Accretions and Icing Effects for Modern Airfoils, NASA/TP-2000-210031,2000.

  2. Fujii, K. and Obayashi, S., Practical Applications of New LU-ADI Scheme for the Three-Dimensional Navier-Stokes Computation of Transonic Viscous Flows, AIAA Paper, vol. 86, pp. 369-370,1986.

  3. Hagiwara, Y., Ishikawa, S., Kimura, R., and Toyohara, K., Ice Growth and Interface Oscillation of Water Droplets Impinged on a Cooling Surface, J. Crystal Growth, vol. 468, pp. 46-53, 2017.

  4. Harada, T., Koshizuka, S., and Shimazaki, K., Improvement of Wall Boundary Calculation Model for MPS Method, Trans. Jpn. Soc. Comput. Eng. Sci, vol. 2008, p. 20080006, 2008 (in Japanese).

  5. Hayashi, R. and Yamamoto, M., Modeling of Ice Shedding Phenomenon for Engine Fan Icing, Trans. JSME, vol. 80, no. 815, pp. 1-12, 2014 (in Japanese).

  6. Hayashi, R. and Yamamoto, M., Numerical Simulation on Ice Shedding Phenomena in Turbomachinery, J. Energy Power Eng., vol. 9, no. 1,pp. 45-53,2015.

  7. Kato, M. and Launder, B., The Modeling of Turbulent Flow around Stationary and Vibrating Square Cylinders, in Proc. of 9th Symp. on Turbulent Shear Flows, vol. 1, Kyoto, Japan, 1993.

  8. Kondo, S., Mamori, H., Fukushima, N., Fukudome, K., and Yamamoto, M., Numerical Simulation of Solidification Phenomena of Single Molten Droplet on Flat Plate Using E-MPS Method, J. Fluid Sci. Technol., vol. 13, no. 3, p. JFST0013, 2018.

  9. Koshizuka, S., A Particle Method for Incompressible Viscous Flow with Fluid Fragmentation, Comput. Fluid Dyn. J, vol. 4, pp. 29-46,1995 (in Japanese).

  10. Lee, S. and Loth, E., Simulation of Icing on a Cascade of Stator Blades, J. Propuls. Power, vol. 24, no. 6, pp. 1309-1316,2008.

  11. Messinger, B.L., Equilibrium Temperature of an Unheated Icing Surface as a Function of Air Speed, J. Aeronaut. Sci., vol. 20, pp. 29-42,1953.

  12. Myers, T.G., Extension to the Messinger Model for Aircraft Icing, AIAA J, vol. 39, no. 2, pp. 211-218, 2001.

  13. Ona, K., Toda, K., and Yamamoto, M., Numerical Simulation of Ice Accretion in Jet Engine Inlet, in Proc. of 8th Int. Symp. on Transport Phenomena and Dynamics of Rotating Machinery, Vol. 1, pp. 57-63, 2000.

  14. Oochi, M., Koshizuka, S., and Sakai, M., Explicit MPS Algorithm for Free Surface Flow Analysis, Trans. Jpn. Soc. Comput. Eng. Sci, vol. 2010, p. 20100013, 2010 (in Japanese).

  15. Ozgen, S. and Canibek, M., Ice Accretion Simulation on Multi-Element Airfoils Using Extended Messinger Model, Heat Mass Transf., vol. 45, no. 3, pp. 305-322, 2009.

  16. Paraschivoiu, I., Tran, P., and Brahimi, M., Prediction of Ice Accretion with Viscous Effects on Aircraft Wings, J. Aircraft, vol. 31, no. 4, pp. 855-861, 1994.

  17. Sheldahl, R.E. and Klimas, P.C., Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections through 180-Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines, Sandia National Labs., Albuquerque, NM, SAND-80-2114,1981.

  18. Sun, M., Kong, W., Wang, F., and Liu, H., Effect of Nucleation and Icing Evolution on Run-Back Freezing of Supercooled Water Droplet, Aerospace Syst., vol. 2, no. 2, pp. 147-153, 2019a.

  19. Sun, M., Kong, W., Wang, F., and Liu, H., Impact Freezing Modes of Supercooled Droplets Determined by Both Nucleation and Icing Evolution, Int. J. Heat Mass Transf., vol. 142, p. 118431,2019b.

  20. Toba, D., Mamori, H., Fukushima, N., and Yamamoto, M., Icing Study of Super Cooled Water Droplet Impinging on Airfoil Using E-MPS Method, New York: ASTFE Digital Library, Begell House Inc., 2018.

  21. Tran, P., Brahimi, M., Paraschivoiu, I., Pueyo, A., and Tezok, F., Ice Accretion on Aircraft Wings with Thermodynamic Effects, J. Aircraft, vol. 32, no. 2, pp. 444-446,1995.

  22. Wright, W.B., Gent, R., and Guffond, D., DRA/NASA/ONERA Collaboration on Icing Research. Part 2; Prediction of Airfoil Ice Accretion, NASA-CR-202349, p. 54, 1997.

  23. Yee, H.C., Upwind and Symmetric Shock-Capturing Schemes, NASA-TM-89464, p. 130, 1987.

  24. Yuki, K. and Yamamoto, M., SLD Icing Simulation on NACA Airfoil Using MPS Method, in Proc. of Joint 11th World Congress on Computational Mechanics, WCCM 2014, the 5th European Conference on Computational Mechanics, International Center for Numerical Methods in Engineering, pp. 5820-5826, 2014.


Articles with similar content:

ICING STUDY OF SUPER COOLED WATER DROPLET IMPINGING ON AIRFOIL USING E-MPS METHODD
3rd Thermal and Fluids Engineering Conference (TFEC), Vol.20, 2018, issue
Daiki Toba, Naoya Fukushima, Hiroya Mamori, Makoto Yamamoto
A SIMPLIFIED COMPUTATIONAL MODEL FOR MICROPLATES BASED ON A MODIFIED COUPLE STRESS THEORY
International Journal for Multiscale Computational Engineering, Vol.17, 2019, issue 5
Liyong Tong, Shengqi Yang, Shutian Liu
EFFECT OF RETRO JET FIRING ON THE AERODYNAMICS OF A WING BODY CONFIGURATION AT INSTANT OF SEPARATION
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Sanjoy Kumar Saha, G Vidya
EFFECT OF WINGLET VARIATION ON UAV AERODYNAMIC CHARACTERISTICS
International Journal of Fluid Mechanics Research, Vol.45, 2018, issue 6
Wikan Sakarinto, Setyawan Bekti Wibowo, Felixtianus Eko Wismo Winarto
FLOW PAST STATIONARY AND OSCILLATING AIRFOIL AT A LOW REYNOLDS NUMBER USING SHARP INTERFACE IMMERSED-BOUNDARY APPROACH
Journal of Flow Visualization and Image Processing, Vol.27, 2020, issue 1
Pradeep Kumar Seshadri, Ashoke De