Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Heat Transfer Research
Factor de Impacto: 0.404 Factor de Impacto de 5 años: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN En Línea: 2162-6561

Volumes:
Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018023257
pages 697-715

EFFECT OF LORENTZ FORCES ON NANOFLUID FLOW INSIDE A POROUS ENCLOSURE WITH A MOVING WALL USING VARIOUS SHAPES OF CuO NANOPARTICLES

Zhixiong Li
School of Engineering, Ocean University of China, Qingdao 266110, China; School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
Mohsen Sheikholeslami
Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran
M. M. Bhatti
Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

SINOPSIS

Forced convection of a nanofluid in a permeable enclosure with a moving wall is presented under the effect of Lorentz forces. The mathematical modeling is formulated with the help of a stream function. The control volume finite element method (CVFEM) has been used to determine the solutions of nonlinear coupled differential equations. Shape effects of nanoparticles (NPs) with Brownian motion impact are taken into account in the present flow problem. Graphical results are demonstrated for multiple values of Darcy number, CuO-water volume fraction, Reynolds number, and Hartmann number, respectively. Computational results depict that platelet-shaped nanoparticles have a higher rate of heat transfer. Convective heat transfer augments with increase in the Darcy and Reynolds numbers while it is reduced with increase of a magnetic field.


Articles with similar content:

BUOYANCY-DRIVEN HEAT TRANSFER OF WATER−BASED NANOFLUID IN A PERMEABLE CYLINDRICAL PIPE WITH NAVIER SLIP THROUGH A SATURATED POROUS MEDIUM
Journal of Porous Media, Vol.18, 2015, issue 12
Sara Khamis, Oluwole Daniel Makinde, Yaw Nkansah-Gyekye
VISCOUS DISSIPATION EFFECT FOR DOUBLE DIFFUSIVE FREE CONVECTION FLOW ALONG A VERTICAL PLATE EMBEDDED IN A POROUS MEDIUM SATURATED WITH A NANOFLUID
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2017, issue
Annis Aghbari , Djamel Sadaoui , Hamza Ali Agha
MAGNETIC FERRO-NANOFLUID FLOW IN A ROTATING CHANNEL CONTAINING DARCIAN POROUS MEDIUM CONSIDERING INDUCED MAGNETIC FIELD AND HALL CURRENTS
Special Topics & Reviews in Porous Media: An International Journal, Vol.10, 2019, issue 4
S. Das, B. Tarafdar, Oluwole Daniel Makinde, Rabindra N. Jana
BIOCONVECTIVE NON-NEWTONIAN NANOFLUID TRANSPORT OVER A VERTICAL PLATE IN A POROUS MEDIUM CONTAINING MICROORGANISMS IN A MOVING FREE STREAM
Journal of Porous Media, Vol.18, 2015, issue 4
Waqar Khan, Ahmad I. Md. Ismail, Mohammed Jashim Uddin
STRATIFICATION EFFECT ON FREE CONVECTIVE DARCY FOR CHHEIMER BOUNDARY LAYER FLOW UNDER MULTIPLE INTERACTING FORCES
Computational Thermal Sciences: An International Journal, Vol.10, 2018, issue 1
B. V. Rathish Kumar, S.V.S.S.N.V.G. Krishna Murthy, Frédéric Magoulès, Vinay Kumar