Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Heat Transfer Research
Factor de Impacto: 0.404 Factor de Impacto de 5 años: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN En Línea: 2162-6561

Volumes:
Volumen 51, 2020 Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.v35.i12.50
10 pages

Experimental and Computational Investigation of the Hydrodynamics and Heat Transfer in a Flat Channel of Variable Width for Smooth and Intensified Surfaces

R. Banker
General Electric CR&D, USA
Mikhail Ya. Belenkiy
JSC "I. I. Polzunov Central Boiler and Turbine Institute" (NPO TsKTI), St. Petersburg, 195257, Russia
Mikhail Gotovskii
I. I. Polzunov Scientific and Development Association on Research and Design of Power Equipment (NPO TsKTI), 3/6 Atamanskaya Str., St. Petersburg, 191167, Russia
B. S. Fokin
JSC "I. I. Polzunov Central Boiler and Turbine Institute" (NPO TsKTI), St. Petersburg, 195257, Russia

SINOPSIS

We present the results of experimental and computational investigation of the resistance and heat transfer in a flat channel of variable width with converging and diverging flows at rather small convergence (divergence) angles. The results were obtained for both smooth surfaces and surfaces with intensification by dimples. It is showed experimentally that for long channels, laminarization and flow instability effects appear even at angles of 1-2°. But there is a noticeable influence only on the resistance coefficient, whereas the behavior of heat transfer is almost the same as in the absence of acceleration for both smooth and intensified surface. The numerical analysis of convective heat transfer in a narrow converging channel with a package of 15 conical dimples on one of its sides generally confirmed the data obtained in physical experiments on the advanced increase in heat transfer as compared to hydraulic resistance. Vortex-type flow synchronization effect in dimples is established.


Articles with similar content:

Hydrodynamics and Heat Transfer in a two-dimensional microchannel
International Heat Transfer Conference 12, Vol.10, 2002, issue
Michel Favre-Marinet, Stéphane Le Person, Puzhen Gao
Vortex Heat Transfer Enhancement in Dimpled Channels
International Heat Transfer Conference 15, Vol.23, 2014, issue
Egon Hassel, Yaroslav Chudnovsky, Nikolai Kornev, Sergey A. Isaev, Alexander Leontiev
COMPARISON OF THE PERFORMANCES BETWEEN THE CHANNEL AND THE CORRUGATED CHANNEL OF THE SPHERICAL CONVEX/CONCAVE FIN
Second Thermal and Fluids Engineering Conference, Vol.31, 2017, issue
Li-Min Chang, Liang-Bi Wang, Jian Liu, Yong-Heng Zhang, Liang-Chen Wang, Peng Guo
Outflow Boundary Conditions for the Computational Analysis of Jet Noise
International Journal of Fluid Mechanics Research, Vol.27, 2000, issue 2-4
R. R. Mankbadi, M. E. Hayder, S. I. Hariharan, James N. Scott
HEAT TRANSFER ENHANCEMENT OF INTERNAL PASSAGE USING DIMPLE/PROTRUSION
International Heat Transfer Conference 13, Vol.0, 2006, issue
S. D. Hwang, Hyung-Hee Cho