Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Heat Transfer Research
Factor de Impacto: 0.404 Factor de Impacto de 5 años: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN En Línea: 2162-6561

Volumes:
Volumen 51, 2020 Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2014005630
pages 31-48

NUMERICAL SIMULATION OF CONVECTIVE HEAT TRANSFER AND PRESSURE DROP IN TWO TYPES OF LONGITUDINALLY AND INTERNALLY FINNED TUBES

Feng Wu
School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, China
Wenjing Zhou
Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China

SINOPSIS

With two kinds of methods of boundary condition treatment, three-dimensional turbulent flow and heat transfer problems in two types of internally finned tubes with a blocked core-tube have been studied numerically by the realizable k−ε model. The numerical simulation results obtained from two calculation models were compared with experimental data. It was found that the simulation results obtained from the turbulent flow model are closer to the experimental values than those obtained from the laminar flow model. Meanwhile, it has been found that the critical Reynolds number for the flow that develops in internally finned tubes from a laminar flow to a turbulent one is much less than the Reynolds number for traditional bare tubes. The calculation results also indicate that the periodical ridges inside the finned tubes change the distribution of the inner flow field and temperature profile. Unlike straight tubes, in internally finned tubes, a secondary vortex flow emerges that plays a definitely destructive role for the flow boundary layer and increases the turbulent kinetic energy of the flow field. With the field synergy principle, a contrasting analysis of the intensified heat exchange mechanism for internally finned tubes and a bare annular tube was performed quantitatively. The results show that the field synergy degree of longitudinally ridged and internally finned tubes is better than that of bare annular tubes, which enhance heat transfer.


Articles with similar content:

NUMERICAL SIMULATION ON TURBULENT FLUID FLOW AND HEAT TRANSFER ENHANCEMENT OF A TUBE BANK FIN HEAT EXCHANGER WITH MOUNTED VORTEX GENERATORS ON THE FINS
Journal of Enhanced Heat Transfer, Vol.18, 2011, issue 5
Wan-Ling Hu, Liang-Bi Wang, Yong-Heng Zhang
EFFECTS OF GROOVE ARRANGEMENTS ON THE FLOW PATTERN AND HEAT TRANSFER IN A HEAT EXCHANGER TUBE WITH DISCRETE GROOVES
Second Thermal and Fluids Engineering Conference, Vol.32, 2017, issue
Peng Liu, Nianben Zheng, Zhichun Liu, Wei Liu, Feng Shan
Enhancement of Heat Transfer Performance by Using Sawtooth Fin Structure in the Multiport Microchannel Flat Tube
International Heat Transfer Conference 15, Vol.23, 2014, issue
Yanhua Diao, Yanni Zhang, Yaohua Zhao, Ji Zhang
The Influence of the Fin Type and Base Tube Diameter of Serrated and Solid-Fin Tubes on the Heat Transfer and Pressure Drop Performance
International Heat Transfer Conference 15, Vol.23, 2014, issue
Erling Naess, Anna Holfeld
DNS OF TURBULENT FLOW IN AN ELLIPTICAL DUCT
TSFP DIGITAL LIBRARY ONLINE, Vol.4, 2005, issue
Alexander Yakhot, Nikolay V. Nikitin