Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Heat Transfer Research
Factor de Impacto: 0.404 Factor de Impacto de 5 años: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN En Línea: 2162-6561

Volumes:
Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2016016562
pages 1003-1022

EVALUATION OF THE PERFORMANCE OF CAVITIES IN NUCLEATE BOILING AT MICROSCALE LEVEL

Yu-Tong Mu
School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
Li Chen
Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
Qin-Jun Kang
Computational Earth Science Group (EES-16), Los Alamos National Laboratory, Los Alamos, NM, USA
Wen-Quan Tao
State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xian Jiaotong University, Xian 710049, China

SINOPSIS

Nucleate boiling heat transfer (NBHT) from enhanced structures is an effective way to dissipate a high heat flux. In the present study, the behavior of cavities with nucleation on roughened surfaces is studied numerically during the entire ebullition cycle based on the phase-change lattice Boltzmann method. The adopted model is firstly validated by the Laplace law and the two-phase coexistence curve and then is applied to investigate the effects of the cavity structure on NBHT. The bubble departure diameter, departure frequency, and the total boiling heat flux of the ebullition cycle are also studied. It is shown that the cavity widths and the cavity grooves exhibit a significant influence on the NBHT features. A cavity with a circular groove in the present research shows the best performance for NBHT in terms of the averaged heat flux and bubble release frequency. When a specific cavity is combined with other different cavities on roughened surfaces, its nucleation process on different roughened surfaces may differ greatly.


Articles with similar content:

A THEORETICAL MODEL FOR BUBBLE FREQUENCY IN NUCLEATE POOL BOILING INCLUDING SURFACE EFFECTS
International Heat Transfer Conference 6, Vol.1, 1978, issue
Ross L. Judd, M. S. M. Shoukri
NUMERICAL STUDY OF BUBBLE DYNAMICS ON SURFACE WITH SWITCHABLE WETTABILITY
International Heat Transfer Conference 16, Vol.4, 2018, issue
Tao Wang, Lei Zhang, SeolHa Kim, Yuyan Jiang
NUCLEATE POOL BOILING ON OXIDIZED TUBES
International Heat Transfer Conference 10, Vol.12, 1994, issue
Kwang T. Hong, Ralph L. Webb, Harris E. Imadojemu
INFLUENCE OF THE SURFACE STRUCTURE ON POOL BOILING HEAT TRANSFER
International Heat Transfer Conference 13, Vol.0, 2006, issue
A. Luke
BUBBLE DYNAMICS AND HEAT TRANSFER IN A WETTABILITY PATTERNED FLOW BOILING MICROCHANNEL
International Heat Transfer Conference 16, Vol.4, 2018, issue
Huihe Qiu, Hongzhao Wang