Suscripción a Biblioteca: Guest

THE PULSE DESCRIPTORS IN SENSITIVITY STUDIES OF HYBRID SORPTION COLUMN TRANSPORT MODELS

Volumen 22, Edición 6, 2019, pp. 647-662
DOI: 10.1615/JPorMedia.2019028916
Get accessGet access

SINOPSIS

In column tests, the description of pollutant migration by means of single sorption models sometimes proves insufficient. If equilibrium and nonequilibrium sorption occur concurrently during the pollutant migration in the column, then hybrid (two-site) models are more effective in terms of the transport description. This article presents sensitivity analysis results for six hybrid sorption models. The authors identified a dependence of the reactive tracer breakthrough curve shape on sorption parameter values. The applied set of pulse descriptors allowed for a quantitative comparison of the influence of the sorption parameter values on the breakthrough curve shape. The results may help to simplify the transport model, facilitate laboratory test result interpretations, and support model calibration. The authors propose an algorithm, based on descriptors, for selecting a hybrid sorption model appropriate for results of column tests. This article is a continuation of the study which presented sensitivity analysis results of single sorption models.

REFERENCIAS
  1. Cameron, D.R. and Klute, A., Convective-Dispersive Solute Transport with a Combined Equilibrium and Kinetic Adsorption Model, Water Resour. Res., vol. 13, no. 1, pp. 183–188, 1977. DOI: 10.1029/WR013i001p00183

  2. Dubus, I.G., Brown, C.D., and Beulke, S., Sensitivity Analyses for Four Pesticide Leaching Models, Pest Manag. Sci., vol. 59, no. 9, pp. 962–982, 2003. DOI: 10.1002/ps.723

  3. Fohrmann, G., Maloszewski, P., and Seiler, K.P., Experimental Determination of the Copper & Antimony Mobility in Calcareous and Non-Calcareous Aquifer Sediments in Columns and 1-D Reactive Transport Modelling, in New Approaches to Characterizing Groundwater Flow, K.P. Seiler and S. Wohnlich, Eds., Lisse.

  4. Jacques, J., Lavergne, C., and Devictor, N., Sensitivity Analysis in Presence of Model Uncertainty and Correlated Inputs, Reliab. Eng. Syst. Safe., vol. 91, nos. 10-11, pp. 1126–1134, 2006. DOI: 10.1016/j.ress.2005.11.047

  5. Johnson, G.R., Gupta, K., Putz, D.K., Hu, Q., and Brusseau, M.L., The Effect of Local-Scale Physical Heterogeneity and Nonlinear, Rate-Limited Sorption/Desorption on Contaminant Transport in Porous Media, J. Contam. Hydrol., vol. 64, nos. 1-2, pp. 35–58, 2003. DOI: 10.1016/S0169-7722(02)00103-1

  6. Kaczmarek, M. and Kazimierska-Drobny, K., Simulation of Reactive Materials in Column and Reservoir Tests. Sensitivity Analysis for a Linear Coupled Model, Comput. Geotech., vol. 34, no. 4, pp. 247–253, 2007. DOI: 10.1016/j.compgeo.2007.02.010

  7. Khan, A.A., Muthukrishnan, M., and Guha, B.K., Sorption and Transport Modeling of Hexavalent Chromium on Soil Media, J. Hazard. Mater., vol. 174, nos. 1-3, pp. 444–454, 2010. DOI: 10.1016/j.jhazmat.2009.09.073

  8. Kim, S.B., On, H.S., Kim, D.J., Jury,W.A., and Wang, Z., Determination of Bromacil Transport as a Function ofWater and Carbon Content in Soil, J. Environ. Sci. Health Part B, vol. 42, no. 5, pp. 529–537, 2007. DOI: 10.1080/19312450701392482

  9. Li, H.,Wang, J., Teng, Y., andWang, Z., Study on Mechanism of Transport of Heavy Metals in Soil inWestern Suburb of Beijing, Chin. J. Geochem., vol. 25, no. 2, pp. 173–177, 2006. DOI: 10.1007/BF02872178

  10. Liedl, R. and Ptak, T., Modelling of Diffusion-Limited Retardation of Contaminants in Hydraulically and Lithologically Nonuniform Media, J. Contam. Hydrol., vol. 66, nos. 3-4, pp. 239–259, 2003. DOI: 10.1016/S0169-7722(03)00028-7

  11. Liu, K.-H., Enfield, C.G., and Mravik, S.C., Evaluation of Sorption Models in the Simulation of Naphthalene Transport through Saturated Soils, Groundwater, vol. 29, no. 5, pp. 685–692, 1991. DOI: 10.1111/j.1745-6584.1991.tb00560.x

  12. Małecki, J.J., Ed., Determination of Contaminant Migration Parameters in a Porous Medium for Hydrogeological and Environmental Protection Research: Methodological Guide, Warszawa: Uniwersytet Warszawski, WydziałGeologii, 2006 (in Polish).

  13. Marciniak, M., Kaczmarek, M., Okonska, M., and Kazimierska-Drobny, K., The Identification of Hydrogeological Parameters on the Basis of a Numerical Simulation of a Breakthrough Curve and Optimization Methods, Pozna´n: Bogucki Wyd. Naukowe, 2009 (in Polish).

  14. Marciniak, M. and Okonska, M.,, The Identification of Hydrogeological Parameters on the Basis of the Column Experiment Modelling, From Data Gathering and Groundwater Modelling to Integrated Management, Hidrogeologia y Aguas Subterraneas, Madrid, vol. 21, pp. 421–427, 2006.

  15. Marciniak, M., Oko´nska, M., Kaczmarek, M., and Kazimierska-Drobny, K., The Sensitivity Test for a Breakthrough Curve Recorded during Tracer Migration in a Filtration Column, Biuletyn PIG, vol. 456, accessed January, 2014, from https://biuletynpig.pl/resources/html/article/details?id=45614, 2013 (in Polish).

  16. Montillet, A., Khalifa, A.O.A., and Sabiri, N.-E., Liquid Flow through Sands: Reliability of Tortuosity Measured from Electrical Conductivity and the Importance of Evaluating Effective Porosity, J. Porous Media, vol. 19, no. 6, pp. 527–537, 2016. DOI: 10.1615/JPorMedia.v19.i6.40

  17. Neville, C.J., Ibaraki, M., and Sudicky, E.A., Solute Transport with Multiprocess Nonequilibrium: A Semi-Analytical Solution Approach, J. Contam. Hydrol., vol. 44, no. 2, pp. 141–159, 2000. DOI: 10.1016/S0169-7722(00)00094-2

  18. Okonska, M., Kaczmarek, M., Małoszewski, P., and Marciniak, M., The Verification of the Estimation of Transport and Sorption Parameters in the MATLAB Environment. A Column Test, Geol., Geophys. Environ., vol. 43, no. 3, pp. 213–227, 2017. DOI: 10.7494/geol.2017.43.3.213

  19. Okonska, M., Marciniak, M., and Kaczmarek, M., The Pulse Descriptors in Sensitivity Studies of no Sorption and Single Sorption Column Transport Models, J. Porous Media, vol. 22, no. 5, pp. 563–582, 2019.

  20. Okonska, M., Marciniak, M., Kaczmarek, M., and Kazimierska-Drobny, K., Identification of Filtration and Migration Parameters in the MATLAB Calculation Environment using Numerical Simulation of Breakthrough Curve and Optimization Methods, in Water Resources Management V, C.A. Brebbia and V. Popov, Eds., Southampton, Boston.

  21. Raoof, A. and Hassanizadeh, S.M., Upscaling Transportof Adsorbing Solutes in Porous Media, J. Porous Media, vol. 13, no. 5, pp. 395–408, 2010. DOI: 10.1615/JPorMedia.v13.i5.10

  22. Selvaraju, N. and Pushpavanam, S., Adsorption Characteristics on Sand and Brick Beds, Chem. Eng. J., vol. 147, nos. 2-3, pp. 130–138, 2009. DOI: 10.1016/j.cej.2008.06.040

  23. Weber, W.J. Jr., McGinley, P.M., and Katz, L.E., Sorption Phenomena in Subsurface Systems: Concepts, Models and Effects on Contaminant Fate and Transport, Water Res., vol. 25, no. 5, pp. 499–528, 1991. DOI: 10.1016/0043-1354(91)90125-A

  24. Wehrhan, A., Kasteel, R., Simunek, J., Groeneweg, J., and Vereecken, H., Transport of Sulfadiazine in Soil Columns — Experiments and Modelling Approaches, J. Contam. Hydrol., vol. 89, nos. 1-2, pp. 107–135, 2007. DOI: 10.1016/j.jconhyd.2006.08.002

  25. Witczak, S., Kania, J., and Kmiecik, E., Guidebook on Selected Physical and Chemical Indicators of Groundwater Contamination and Methods of Their Determination, Warszawa: Inspekcja Ochrony ´Srodowiska, 2013 (in Polish).

  26. Wolt, J., Singh, P., Cryer, S., and Lin, J., Sensitivity Analysis for Validating Expert Opinion as to Ideal Data Set Criteria for Transport Modeling, Environ. Toxicol. Chem., vol. 21, no. 8, pp. 1558–1565, 2002. DOI: 10.1002/etc.5620210805

CITADO POR
  1. Marciniak Marek, Okońska Monika, Kaczmarek Mariusz, Preselection of a sorption model based on a column test: the algorithm and an example of its application, Hydrogeology Journal, 29, 4, 2021. Crossref

  2. Pietrzak Damian, Modeling migration of organic pollutants in groundwater — Review of available software, Environmental Modelling & Software, 144, 2021. Crossref

  3. Pietrzak Damian, Kania Jarosław, Kmiecik Ewa, Wątor Katarzyna, Identification of transport parameters of chlorides in different soils on the basis of column studies, Geologos, 25, 3, 2019. Crossref

Próximos Artículos

Effects of Momentum Slip and Convective Boundary Condition on a Forced Convection in a Channel Filled with Bidisperse Porous Medium (BDPM) Vanengmawia PC, Surender Ontela ON THERMAL CONVECTION IN ROTATING CASSON NANOFLUID PERMEATED WITH SUSPENDED PARTICLES IN A DARCY-BRINKMAN POROUS MEDIUM Pushap Sharma, Deepak Bains, G. C. Rana Effect of Microstructures on Mass Transfer inside a Hierarchically-structured Porous Catalyst Masood Moghaddam, Abbas Abbassi, Jafar Ghazanfarian Insight into the impact of melting heat transfer and MHD on stagnation point flow of tangent hyperbolic fluid over a porous rotating disk Priya Bartwal, Himanshu Upreti, Alok Kumar Pandey Numerical Simulation of 3D Darcy-Forchheimer Hybrid Nanofluid Flow with Heat Source/Sink and Partial Slip Effect across a Spinning Disc Bilal Ali, Sidra Jubair, Md Irfanul Haque Siddiqui Fractal model of solid-liquid two-phase thermal transport characteristics in the rough fracture network shanshan yang, Qiong Sheng, Mingqing Zou, Mengying Wang, Ruike Cui, Shuaiyin Chen, Qian Zheng Application of Artificial Neural Network for Modeling of Motile Microorganism-Enhanced MHD Tangent Hyperbolic Nanofluid across a vertical Slender Stretching Surface Bilal Ali, Shengjun Liu, Hongjuan Liu Estimating the Spreading Rates of Hazardous Materials on Unmodified Cellulose Filter Paper: Implications on Risk Assessment of Transporting Hazardous Materials Heshani Manaweera Wickramage, Pan Lu, Peter Oduor, Jianbang Du ELASTIC INTERACTIONS BETWEEN EQUILIBRIUM PORES/HOLES IN POROUS MEDIA UNDER REMOTE STRESS Kostas Davanas Gravity modulation and its impact on weakly nonlinear bio-thermal convection in a porous layer under rotation: a Ginzburg-Landau model approach Michael Kopp, Vladimir Yanovsky Pore structure and permeability behavior of porous media under in-situ stress and pore pressure: Discrete element method simulation on digital core Jun Yao, Chunqi Wang, Xiaoyu Wang, Zhaoqin Huang, Fugui Liu, Quan Xu, Yongfei Yang Influence of Lorentz forces on forced convection of Nanofluid in a porous lid driven enclosure Yi Man, Mostafa Barzegar Gerdroodbary SUTTERBY NANOFLUID FLOW WITH MICROORGANISMS AROUND A CURVED EXPANDING SURFACE THROUGH A POROUS MEDIUM: THERMAL DIFFUSION AND DIFFUSION THERMO IMPACTS galal Moatimid, Mona Mohamed, Khaled Elagamy CHARACTERISTICS OF FLOW REGIMES IN SPIRAL PACKED BEDS WITH SPHERES Mustafa Yasin Gökaslan, Mustafa Özdemir, Lütfullah Kuddusi Numerical study of the influence of magnetic field and throughflow on the onset of thermo-bio-convection in a Forchheimer‑extended Darcy-Brinkman porous nanofluid layer containing gyrotactic microorganisms Arpan Garg, Y.D. Sharma, Subit K. Jain, Sanjalee Maheshwari A nanofluid couple stress flow due to porous stretching and shrinking sheet with heat transfer A. B. Vishalakshi, U.S. Mahabaleshwar, V. Anitha, Dia Zeidan ROTATING WAVY CYLINDER ON BIOCONVECTION FLOW OF NANOENCAPSULATED PHASE CHANGE MATERIALS IN A FINNED CIRCULAR CYLINDER Noura Alsedais, Sang-Wook Lee, Abdelraheem Aly Porosity Impacts on MHD Casson Fluid past a Shrinking Cylinder with Suction Annuri Shobha, Murugan Mageswari, Aisha M. Alqahtani, Asokan Arulmozhi, Manyala Gangadhar Rao, Sudar Mozhi K, Ilyas Khan CREEPING FLOW OF COUPLE STRESS FLUID OVER A SPHERICAL FIELD ON A SATURATED BIPOROUS MEDIUM Shyamala Sakthivel , Pankaj Shukla, Selvi Ramasamy
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain