Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Journal of Porous Media
Factor de Impacto: 1.49 Factor de Impacto de 5 años: 1.159 SJR: 0.504 SNIP: 0.671 CiteScore™: 1.58

ISSN Imprimir: 1091-028X
ISSN En Línea: 1934-0508

Volumes:
Volumen 22, 2019 Volumen 21, 2018 Volumen 20, 2017 Volumen 19, 2016 Volumen 18, 2015 Volumen 17, 2014 Volumen 16, 2013 Volumen 15, 2012 Volumen 14, 2011 Volumen 13, 2010 Volumen 12, 2009 Volumen 11, 2008 Volumen 10, 2007 Volumen 9, 2006 Volumen 8, 2005 Volumen 7, 2004 Volumen 6, 2003 Volumen 5, 2002 Volumen 4, 2001 Volumen 3, 2000 Volumen 2, 1999 Volumen 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v19.i6.20
pages 497-513

NUMERICAL COMPUTATION OF MACROSCOPIC TURBULENT QUANTITIES IN A POROUS MEDIUM: AN EXTENSION TO A MACROSCOPIC TURBULENCE MODEL

Nima F. Jouybari
Division of Fluid Mechanics, Lulea University of Technology, 971 87 Lulea, Sweden; Department of Mechanical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran
Staffan Lundstrom
Luleå university of technology
J. Gunnar I. Hellstrom
Division of Fluid Mechanics, Lulea University of Technology, 971 87 Lulea, Sweden
Mehdi Maerefat
Department of Mechanical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran
Majid E. Nimvari
Faculty of Engineering Technologies, Amol University of Special Modern Technologies, Amol, Iran

SINOPSIS

A numerical study is conducted using a standard numerical model for a porous medium consisting of a staggered arrangement of square cylinders. Fully developed macroscopic turbulent kinetic energy and dissipation rate are derived and analyzed for different porosities of the medium at different Reynolds numbers. The results obtained are used to extend the applicability range of an existing macroscopic turbulence model in porous media to low-Reynolds-number turbulent flows. It is shown that the levels of normalized macroscopic turbulent kinetic energy and dissipation rate are not constant over the entire range of Reynolds number. These quantities increase from lower levels at low Reynolds numbers up to an asymptotic value being independent of Reynolds number. The constants in the closure expression of the macroscopic turbulence equations are modified using the present results. Finally, in order to highlight the importance of the present modifications, the results of the macroscopic turbulence model before and after the modifications are compared for two cases.


Articles with similar content:

Numerical Modeling of Turbulent Flow in Porous Media Using a Spatially Periodic Array
Journal of Porous Media, Vol.1, 1998, issue 1
S. Yamashita, Fujio Kuwahara, Akira Nakayama, Y. Kameyama
Thermodynamic consistence of modeling molecular diffusion, energy flux and entropy production
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2009, issue
R. Groll
TWO-TIME-SCALE TURBULENCE MODELLING OF A FULLY-PULSED AXISYMMETRIC AIR JET
TSFP DIGITAL LIBRARY ONLINE, Vol.3, 2003, issue
Brian E. Launder, Klaus Bremhorst , Timothy J. Craft
TURBULENT HEAT TRANSFER IN THE ENTRANCE REGION OF A CONCENTRIC ANNULUS WITH INNER CYLINDER ROTATION
International Heat Transfer Conference 7, Vol.6, 1982, issue
S. M. Morcos, M. M. M. Abou-Ellail
THE COMPUTATION OF FLOW AND HEAT TRANSFER THROUGH SQUARE-ENDED U-BENDS, USING LOW-REYNOLDS-NUMBER MODELS
TSFP DIGITAL LIBRARY ONLINE, Vol.2, 2001, issue
Konstantinos-Stephen P. Nikas, Hector Iacovides