Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Journal of Porous Media
Factor de Impacto: 1.49 Factor de Impacto de 5 años: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Imprimir: 1091-028X
ISSN En Línea: 1934-0508

Volumes:
Volumen 22, 2019 Volumen 21, 2018 Volumen 20, 2017 Volumen 19, 2016 Volumen 18, 2015 Volumen 17, 2014 Volumen 16, 2013 Volumen 15, 2012 Volumen 14, 2011 Volumen 13, 2010 Volumen 12, 2009 Volumen 11, 2008 Volumen 10, 2007 Volumen 9, 2006 Volumen 8, 2005 Volumen 7, 2004 Volumen 6, 2003 Volumen 5, 2002 Volumen 4, 2001 Volumen 3, 2000 Volumen 2, 1999 Volumen 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.2018016221
pages 793-811

TIME-DOMAIN EXPLICIT FINITE-ELEMENT METHOD FOR DYNAMIC ANALYSIS OF TRANSVERSELY ISOTROPIC FLUID-SATURATED POROUS MEDIA

Liang Li
College of Architecture and Civil Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
Xiuli Du
College of Architecture and Civil Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
Peixin Shi
School of Urban Rail Transportation, Soochow University, Suzhou, 215002, China
Wei Zhai
College of Architecture and Civil Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China

SINOPSIS

We present a time-domain, explicit, finite-element method (FEM) for dynamic analysis of transversely isotropic fluid-saturated porous media (TIFSPM). Wave propagation equations in TIFSPM are derived based on continuum mechanics. An explicit FE procedure for solving wave propagation equations is developed by applying the decoupling technique in the spatial domain and central difference method and the Newmark constant average acceleration method in the time domain. The explicit FEM is applied to simulate dynamic response of TIFSPM, and simulation results are compared with dynamic response of isotropic fluid-saturated porous media (IFSPM). Parametric studies are performed on the anisotropy coefficient to investigate the effect of material anisotropy on TIFSPM dynamic response. We find that dynamic response of TIFSPM is significantly different from that of IFSPM, and anisotropy impacts largely on TIFSPM dynamic response.


Articles with similar content:

AN ATOMISTIC–CONTINUUM MULTISCALE METHOD FOR MODELING THE THERMOMECHANICAL BEHAVIOR OF HETEROGENEOUS NANOSTRUCTURES
International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 5
M. Jahanshahi, N. Jafarian, N. Heidarzadeh, Amir R. Khoei
STATIC AND DYNAMIC CHARACTERISTICS OF POROUS PLANE INCLINED SLIDER BEARINGS LUBRICATED WITH MAGNETOHYDRODYNAMIC COUPLE-STRESS FLUID
Special Topics & Reviews in Porous Media: An International Journal, Vol.9, 2018, issue 4
Siddharama Patil, S. Shridevi, Neminath B. Naduvinamani
MODIFICATIONS OF MESOSPHERIC CONDUCTIVITY IN SUDDEN IONOSPHERE DISTURBANCES AND CHANGES OF THE SCHUMANN RESONANCE FREQUENCIES
Telecommunications and Radio Engineering, Vol.77, 2018, issue 8
I. G. Kudintseva, Yu. P. Galyuk, A. P. Nickolaenko, Masashi Hayakawa
MOLECULAR DYNAMICS/XFEM COUPLING BY A THREE-DIMENSIONAL EXTENDED BRIDGING DOMAIN WITH APPLICATIONS TO DYNAMIC BRITTLE FRACTURE
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 6
M. Silani, S. P. A. Bordas, Timon Rabczuk, Hossein Talebi, Pierre Kerfriden
NUMERICAL CHARACTERIZATION OF ACRYLIC POLYMER UNDER QUASI-STATIC AND DYNAMIC LOADING BY IMPLEMENTING VISCOELASTIC MATERIAL MODEL
Composites: Mechanics, Computations, Applications: An International Journal, Vol.5, 2014, issue 3
Uzair Ahmed Dar