Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Journal of Porous Media
Factor de Impacto: 1.49 Factor de Impacto de 5 años: 1.159 SJR: 0.504 SNIP: 0.671 CiteScore™: 1.58

ISSN Imprimir: 1091-028X
ISSN En Línea: 1934-0508

Volumes:
Volumen 22, 2019 Volumen 21, 2018 Volumen 20, 2017 Volumen 19, 2016 Volumen 18, 2015 Volumen 17, 2014 Volumen 16, 2013 Volumen 15, 2012 Volumen 14, 2011 Volumen 13, 2010 Volumen 12, 2009 Volumen 11, 2008 Volumen 10, 2007 Volumen 9, 2006 Volumen 8, 2005 Volumen 7, 2004 Volumen 6, 2003 Volumen 5, 2002 Volumen 4, 2001 Volumen 3, 2000 Volumen 2, 1999 Volumen 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v3.i2.60
14 pages

Transient Natural Convection in Differentially Heated Porous Enclosures

A. A. Merrikh
Department of Mechanical Engineering, Eastern Mediterranean University, G. Magosa, T.R.N.C. Mersin 10, Turkey
A. A. Mohamad
Department of Mechanical Engineering, Eastern Mediterranean University, Magosa, T.R.N.C. Mersin 10, Turkey

SINOPSIS

The problem of steady, laminar, hydromagnetic simultaneous heat and mass transfer by natural convection flow over a vertical cone and a wedge embedded in a uniform porous medium is investigated. Two cases of thermal boundary conditions, namely the uniform wall temperature (UWT) and the uniform wall heat flux (UHF), are considered. A nonsimilarity transformation for each case is employed to transform the governing differential equations to a form whereby they produce their own initial conditions. The transformed equations for each case are solved numerically by an efficient implicit, iterative, finite-difference scheme. The obtained results are checked against previously published work on special cases of the problem and are found to be in excellent agreement. A parametric study illustrating the influence of the magnetic field, porous medium inertia effects; heat generation or absorption; lateral wall mass flux; concentration to thermal buoyancy ratio; and the Lewis number on the fluid velocity, temperature, and concentration as well as the Nusselt and the Sherwood numbers is conducted. The results of this parametric study are shown graphically and the physical aspects of the problem are discussed. It is concluded that while the local Nusselt number decreases owing to the imposition of the magnetic field, it increases as a result of the fluid's absorption effects. Also, both the local Nusselt and Sherwood numbers increase as the buoyancy ratio increases. This is true for both uniform wall temperature and heat flux thermal conditions. Furthermore, including the porous medium inertia effect in the mathematical model is predicted to decrease the local Nusselt number for both the isothermal and isoflux wall cases.


Articles with similar content:

Simultaneous Heat and Mass Transfer by Natural Convection from a Cone and a Wedge in Porous Media
Journal of Porous Media, Vol.3, 2000, issue 2
Osamah Al-Hawaj, Ali J. Chamkha, A.-R.A. Khaled
Double-Diffusive Convective Flow of a Micropolar Fluid Over a Vertical Plate Embedded in a Porous Medium with a Chemical Reaction
International Journal of Fluid Mechanics Research, Vol.31, 2004, issue 6
Ali F. Al-Mudhaf, Ali J. Chamkha, Jasem Al-Yatama
MIXED CONVECTION IN MHD MICROPOLAR FLUID WITH RADIATION AND CHEMICAL REACTION EFFECTS
Heat Transfer Research, Vol.45, 2014, issue 3
D. Srinivasacharya, M. Upendar
UNSTEADY MIXED CONVECTION FLOW OVER A VERTICAL PLATE IN A POROUS MEDIUM WITH NON-UNIFORM SLOT SUCTION/INJECTION
Journal of Porous Media, Vol.19, 2016, issue 10
N. Samyuktha, R. Ravindran, M. Ganapathirao
STEADY DOUBLE-DIFFUSIVE MIXED CONVECTION BOUNDARY LAYER FLOW PAST A VERTICAL FLAT PLATE EMBEDDED IN A POROUS MEDIUM FILLED BY A NANOFLUID USING BUONGIORNO'S MODEL
Journal of Porous Media, Vol.19, 2016, issue 4
Ioan Pop, Anuar Ishak, Mohd Hafizi Mat Yasin