Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Journal of Porous Media
Factor de Impacto: 1.752 Factor de Impacto de 5 años: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN Imprimir: 1091-028X
ISSN En Línea: 1934-0508

Volumes:
Volumen 24, 2021 Volumen 23, 2020 Volumen 22, 2019 Volumen 21, 2018 Volumen 20, 2017 Volumen 19, 2016 Volumen 18, 2015 Volumen 17, 2014 Volumen 16, 2013 Volumen 15, 2012 Volumen 14, 2011 Volumen 13, 2010 Volumen 12, 2009 Volumen 11, 2008 Volumen 10, 2007 Volumen 9, 2006 Volumen 8, 2005 Volumen 7, 2004 Volumen 6, 2003 Volumen 5, 2002 Volumen 4, 2001 Volumen 3, 2000 Volumen 2, 1999 Volumen 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v16.i5.10
pages 381-393

EFFICIENT NUMERICAL SIMULATION OF INCOMPRESSIBLE TWO-PHASE FLOW IN HETEROGENEOUS POROUS MEDIA BASED ON EXPONENTIAL ROSENBROCK−EULER METHOD AND LOWER-ORDER ROSENBROCK-TYPE METHOD

Antoine Tambue
Department of Mathematics, University of Bergen, P.O. Box 7800, N-5020 Bergen, Norway

SINOPSIS

In this paper, we present the exponential Rosenbrock−Euler method and the lowest-order Rosenbrock-type method combined with the finite volume (two-point or multi-point flux approximations) space discretization to simulate isothermal incompressible two-phase flow in heterogeneous porous media. The exponential Rosenbrock−Euler method (EREM) linearizes the saturation equation at each time step and makes use of a matrix exponential function of the Jacobian, then solves the corresponding stiff linear ordinary differential equations exactly in time up to the given tolerance in the computation of a matrix exponential function of the Jacobian from the space discretization. Using a Krylov subspace technique makes this computation efficient. Besides, this computation can be done using the free-Jacobian technique. The lowest-order Rosenbrock type method, also called linearly implicit method, is deduced from EREM by approximating the exponential function of the Jacobian by the appropriate rational function of the Jacobian. As a result, this scheme is L-stable and only one linear system is normally solved at each time step. All our numerical examples demonstrate that our methods can compete in terms of efficiency and accuracy with the standard time integrators for reservoir simulation in highly anisotropic and heterogeneous porous media. Simulations are performed up to 1.1 million of unknowns with and without capillary pressure.


Articles with similar content:

EXPONENTIAL EULER TIME INTEGRATOR FOR ISOTHERMAL INCOMPRESSIBLE TWO-PHASE FLOW IN HETEROGENEOUS POROUS MEDIA
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2012, issue
Antoine Tambue
PSEUDO-MULTI-SCALE FUNCTIONS FOR THE STABILIZATION OF CONVECTION-DIFFUSION EQUATIONS ON RECTANGULAR GRIDS
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 4
Ali I. Nesliturk, Onur Baysal
SOME A PRIORI ERROR ESTIMATES FOR FINITE ELEMENT APPROXIMATIONS OF ELLIPTIC AND PARABOLIC LINEAR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 5
Christophe Audouze , Prasanth B. Nair
NONLINEAR NONLOCAL MULTICONTINUA UPSCALING FRAMEWORK AND ITS APPLICATIONS
International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 5
Eric T. Chung, Yalchin Efendiev, Wing T. Leung, Mary Wheeler
UNSTEADY ANALYSIS OF A HETEROGENEOUS MATERIAL USING THE MULTISCALE SEAMLESS-DOMAIN METHOD
International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 3
Masato Takahashi, Yoshihiro Mizutani, Yoshiro Suzuki, Akira Todoroki