Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Journal of Porous Media
Factor de Impacto: 1.752 Factor de Impacto de 5 años: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN Imprimir: 1091-028X
ISSN En Línea: 1934-0508

Volumes:
Volumen 23, 2020 Volumen 22, 2019 Volumen 21, 2018 Volumen 20, 2017 Volumen 19, 2016 Volumen 18, 2015 Volumen 17, 2014 Volumen 16, 2013 Volumen 15, 2012 Volumen 14, 2011 Volumen 13, 2010 Volumen 12, 2009 Volumen 11, 2008 Volumen 10, 2007 Volumen 9, 2006 Volumen 8, 2005 Volumen 7, 2004 Volumen 6, 2003 Volumen 5, 2002 Volumen 4, 2001 Volumen 3, 2000 Volumen 2, 1999 Volumen 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v21.i6.50
pages 555-576

THERMOPHORESIS AND HEAT GENERATION/ABSORPTION EFFECTS ON MAGNETOHYDRODYNAMIC FLOW OF JEFFREY FLUID OVER POROUS OSCILLATORY STRETCHING SURFACE WITH CONVECTIVE BOUNDARY CONDITIONS

Sami Ullah Khan
Department of Mathematics, COMSATS University Islamabad Sahiwal Campus, Sahiwal 57000, Pakistan
Nasir Ali
Department of Mathematics and Statistics, International Islamic University, Islamabad 44000, Pakistan

SINOPSIS

In the current work, the effects of thermophoresis, heat generation/absorption, chemical reaction, and thermal radiation on two-dimensional boundary layer flow of a Jeffrey fluid over an oscillatory stretching surface embedded in a porous medium are investigated. Unlike typical studies, the idea of convective boundary conditions is used to investigate heat and mass transfer phenomenon. With the help of appropriate dimensionless variables, the number of independent variables is reduced in the governing equations, which are then solved analytically by using the homotopy analysis method. The effects of involved physical parameters such as Deborah number, ratio of relaxation to retardation time, Hartmann number, Prandtl number, heat absorption/generation parameter, thermal and concentration and Biot numbers, chemical reaction parameter, Schmidt number and thermophoresis parameter on dimensionless velocity, temperature, and concentration distributions are investigated and discussed quantitatively with the help of various graphs. It is observed that amplitude of oscillations in velocity increases with increasing Deborah number while it follows an opposite trend with increasing porosity parameter. Moreover, the heat transfer increases with increasing porosity parameter and ratio of relaxation to retardation time while it decreases with increasing Deborah number.


Articles with similar content:

THERMAL DIFFUSION EFFECTS ON UNSTEADY MAGNETOHYDRODYNAMIC BOUNDARY LAYER SLIP FLOW PAST A VERTICAL PERMEABLE PLATE
Special Topics & Reviews in Porous Media: An International Journal, Vol.7, 2016, issue 1
B. Rushi Kumar, S. Vijaya Kumar Varma, M. C Raju, C. Veeresh
SISKO NANOFLUID FLOW OVER A VERTICAL STRETCHING SHEET IN A POROUS MEDIUM: A NUMERICAL STUDY
Proceedings of the 25th National and 3rd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2019), Vol.0, 2019, issue
Rajesh Sharma, Ankita Bisht
SORET AND DUFOUR EFFECTS ON RADIATION ABSORPTION FLUID IN THE PRESENCE OF EXPONENTIALLY VARYING TEMPERATURE AND CONCENTRATION IN A CONDUCTING FIELD
Special Topics & Reviews in Porous Media: An International Journal, Vol.7, 2016, issue 2
E. Keshava Reddy, M. C Raju, S. Harinath Reddy
NUMERICAL STUDY OF A JEFFREY FLUID OVER A POROUS STRETCHING SHEET WITH HEAT SOURCE/SINK
International Journal of Fluid Mechanics Research, Vol.46, 2019, issue 2
M. Sudheer Babu, P. Venkata Satya Narayana, D. Harish Babu
Unsteady Free Convective Viscoelastic Boundary Layer Flow Past a Vertical Porous Plate with Internal Heat Generation/Absorption
International Journal of Fluid Mechanics Research, Vol.33, 2006, issue 6
Ioan Pop, Sujit Kumar Khan